Связь компонентов внутренней среды организма крови лимфы и тканевой жидкости

«Внутренняя среда организма:
кровь, лимфа, тканевая жидкость»
Внутренняя среда организма — совокупность жидкостей (крови, лимфы, тканевой жидкости), связанных между собой и принимающих непосредственное участие в процессах обмена веществ. Внутренняя среда организма осуществляет связь между всеми органами и клетками тела. Для внутренней среды характерно относительное постоянство химического состава и физико-химических свойств, которое поддерживается непрерывной работой многих органов.

Кровь — ярко-красная жидкость, циркулирующая в замкнутой системе кровеносных сосудов и обеспечивающая жизнедеятельность всех тканей и органов. В организме человека содержится около 5 л крови.
Бесцветная прозрачная тканевая жидкость заполняет промежутки между клетками. Она образуется из плазмы крови, проникающей через стенки кровеносных сосудов в межклеточные пространства, и из продуктов клеточного обмена веществ. Её объём составляет 15—20 л. Через тканевую жидкость осуществляется связь между капиллярами и клетками: путём диффузии и осмоса через неё передаются питательные вещества и О2 из крови в клетки, а СО2, вода и другие продукты жизнедеятельности — в кровь.
В межклетниках начинаются лимфатические капилляры, которые собирают тканевую жидкость. В лимфатических сосудах она превращается в лимфу — желтоватую прозрачную жидкость. По химическому составу она близка к плазме крови, но содержит в 3—4 раза меньше белков, поэтому обладает небольшой вязкостью. В лимфе содержится фибриноген, и благодаря этому она способна свёртываться, хотя и гораздо медленнее, чем кровь. Среди форменных элементов преобладают лимфоциты и очень мало эритроцитов. Объём лимфы в организме человека составляет 1—2 л.
Основные функции лимфы:
- Трофическая — в неё всасывается значительная часть жиров из кишечника (при этом она приобретает беловатый цвет за счёт эмульгированных жиров).
- Защитная — в лимфу легко проникают яды и бактериальные токсины, нейтрализующиеся затем в лимфатических узлах.
Состав крови
Кровь состоит из плазмы (60 % объёма крови) — жидкого межклеточного вещества и взвешенных в ней форменных элементов (40 % объёма крови) — эритроцитов, лейкоцитов и кровяных пластинок (тромбоцитов).

Плазма — вязкая белковая жидкость жёлтого цвета, состоящая из воды (90— 92 °%) и растворённых в ней органических и неорганических веществ. Органические вещества плазмы: белки (7—8 °%), глюкоза (0,1 °%), жиры и жироподобные вещества (0,8%), аминокислоты, мочевина, мочевая и молочная кислоты, ферменты, гормоны и др. Белки альбумины и глобулины участвуют в создании осмотического давления крови, транспортируют различные нерастворимые в плазме вещества, выполняют защитную функцию; фибриноген участвует в свёртывании крови. Кровяная сыворотка — это плазма крови, не содержащая фибриногена. Неорганические вещества плазмы (0,9 °%) представлены солями натрия, калия, кальция, магния и др. Концентрация различных солей в плазме крови относительно постоянна. Водный раствор солей, который по концентрации соответствует содержанию солей в плазме крови, называется физиологическим раствором. Он используется в медицине для восполнения недостающей в организме жидкости.
Эритроциты (красные кровяные клетки) — безъядерные клетки двояковогнутой формы (диаметр — 7,5 мкм). В 1 мм3 крови содержится примерно 5 млн эритроцитов. Основная функция — перенос О2 от лёгких к тканям и СО2 от тканей к органам дыхания. Окраска эритроцитов определяется гемоглобином, состоящим из белковой части — глобина и железосодержащего гема. Кровь, эритроциты которой содержат много кислорода, ярко-алая (артериальная), а кровь, отдавшая значительную его часть, — тёмно-красная (венозная). Эритроциты образуются в красном костном мозге. Срок их жизни — 100—120 дней, после чего они разрушаются в селезёнке.

Лейкоциты (белые кровяные клетки) — бесцветные клетки, имеющие ядро; их основная функция — защитная. В норме 1 мм3 крови человека содержит 6—8 тыс. лейкоцитов. Некоторые лейкоциты способны к фагоцитозу — активному захватыванию и перевариванию различных микроорганизмов или отмерших клеток самого организма. Лейкоциты образуются в красном костном мозге, лимфатических узлах, селезёнке и тимусе. Продолжительность их жизни — от нескольких дней до нескольких десятков лет. Лейкоциты делятся на две группы: гранулоциты (нейтрофилы, эозинофилы, базофилы), содержащие зернистость в цитоплазме, и агранулоциты (моноциты, лимфоциты).
Тромбоциты (кровяные пластинки) — мелкие (2—5 мкм в диаметре), бесцветные, безъядерные тельца округлой или овальной формы. В 1 мм3 крови насчитывается 250—400 тыс. тромбоцитов. Основная их функция — участие в процессах свёртывания крови. Тромбоциты образуются в красном костном мозге, разрушаются в селезёнке. Продолжительность их жизни — 8 дней.
Функции крови
Функции крови:
- Питательная — доставляет тканям и органам человека питательные вещества.
- Выделительная — удаляет через органы выделения продукты распада.
- Дыхательная — обеспечивает газообмен в лёгких и тканях.
- Регуляторная — осуществляет гуморальную регуляцию деятельности различных органов, разнося по организму гормоны и другие вещества, усиливающие или тормозящие работу органов.
- Защитная (иммунная) — содержит способные к фагоцитозу клетки и антитела (специальные белки), препятствующие размножению микроорганизмов или нейтрализующие их ядовитые выделения.
- Гомеостатическая — принимает участие в поддержании постоянной температуры тела, рН среды, концентрации ряда ионов, осмотического давления, онкотического давления (часть осмотического давления, определяемого белками плазмы крови).

Свёртывание крови
Свёртывание крови — важное защитное приспособление организма, предохраняющее его от потери крови при повреждении сосудов. Свёртывание крови — сложный процесс, состоящий из трёх этапов.
На первом этапе вследствие повреждения стенки сосуда происходит разрушение тромбоцитов и высвобождение фермента тромбопластина.
На втором этапе тромбопластин катализирует превращение неактивного белка плазмы протромбина в активный фермент тромбин. Это превращение осуществляется в присутствии ионов Ca2+.
На третьем этапе тромбин превращает растворимый белок плазмы фибриноген в волокнистый белок фибрин. Нити фибрина переплетаются, образуя густую сеть в месте повреждения кровеносного сосуда. В ней задерживаются клетки крови и формируется тромб (сгусток). В норме кровь свёртывается в течение 5—10 минут.

У людей, страдающих гемофилией, кровь не способна свёртываться.
Это конспект по теме «Внутренняя среда организма: кровь, лимфа, тканевая жидкость». Выберите дальнейшие действия:
- Перейти к следующему конспекту: Группы крови. Иммунитет
- Вернуться к списку конспектов по Биологии.
- Проверить знания по Биологии.
Источник
КРОВЬ КРОВЕНОСНАЯ СИСТЕМА
Внутренняя среда организма
С3 Как осуществляется взаимосвязь крови, лимфы и тканевой жидкости?
С3. Как осуществляется взаимосвязь крови, лимфы и тканевой жидкости? Ответ поясните.
1) из жидкой части крови образуется тканевая жидкость, которая частично может проникать обратно в кровь;
2) тканевая жидкость просачивается в лимфатические капилляры, и образуется лимфа;
3) лимфа по лимфатическим сосудам поступает в вены большого круга кровообращения и смешивается с кровью.
С1 Какие процессы поддерживают постоянство химического состава плазмы крови человека?
1)процессы в буферных системах поддерживают реакцию среды (рН) на постоянном уровне;
2)осуществляется нейрогуморальная регуляция химического состава плазмы.
С1 Введение в вену больших доз лекарственных препаратов сопровождается их разбавлением физиологическим раствором (0,9% раствором NaCl). Поясните почему.
1) введение больших доз препаратов без разбавления может вызвать резкое изменение состава крови и необратимые явления;
2) концентрация физиологического раствора (0,9% раствор NaCl) соответствует концентрации солей в плазме крови и не вызывает гибели клеток крови.
С3 В чём проявляется транспортная функция крови? Приведите не менее трёх примеров.
1) Дыхательная — кровь переносит газы – кислород и углекислый газ.
2) Трофическая — кровь переносит питательные вещества от пищеварительной системы ко всем органам тела.
3) Выделительная — кровь переносит вредные вещства от всех органов тела к органам выделения.
4) Регуляторная — кровь переносит гормоны.
С3 Какое значение имеет кровь в жизнедеятельности человека?
1)выполняет транспортную функцию: доставка кислорода и питательных веществ к тканям и клеткам, удаление углекислого газа и продуктов обмена;
2)выполняет защитную функцию благодаря деятельности лейкоцитов и антител;
3)участвует в гуморальной регуляции жизнедеятельности организма.
С1 Почему происходит свёртывание крови в повреждённых сосудах?
1) при повреждении сосудов разрушаются тромбоциты, из них выделяются ферменты, способствующие превращению фибриногена в фибрин;
2) В нитях фибрина застревают отдельные эритроциты и лейкоциты – образуется так называемый сгусток (тромб). (нити фибрина составляют основу образующегося тромба, который закупоривает сосуд).
С1 Объясните, почему зрелые эритроциты не могут синтезировать белки.
1) Одновременно с исчезновением ядра по мере взросления эритроцита из его цитоплазмы исчезают рибосомы и другие компоненты, участвующие в синтезе белка.
2) в связи с отсутствием хромосом (молекул ДНК) не произойдёт процесс транскрипции, а затем трансляция.
1) у зрелых эритроцитов нет ядра, следовательно, нет ДНК.
2) без ДНК нельзя осуществить транскрипцию иРНК, необходимую для синтеза белка.
С1 С чем связана необходимость поступления в кровь человека ионов железа? Ответ поясните.
1)ионы железа входят в состав гемоглобина эритроцитов;
2)эритроциты обеспечивают транспорт кислорода и углекислого газа.
С3 С чем связана необходимость поступления в кровь человека ионов железа? Ответ поясните.
1)ионы железа входят в состав гемоглобина эритроцитов;
2)гемоглобин эритроцитов обеспечивает транспорт кислорода и углекислого газа, так как способен связываться с этими газами;
3)поступление кислорода необходимо для энергетического обмена клетки, а углекислый газ — его конечный продукт, подлежащий удалению.
С3 Каким образом гемоглобин в организме человека участвует в переносе газов?
1) гемоглобин в капиллярах лёгких образует нестойкое соединение с кислородом – оксигемоглобин, который с током крови доставляется в капилляры большого круга;
2) в капиллярах большого круга оксигемоглобин распадается с освобождением кислорода, здесь же гемоглобин соединяется с углекислым газом с образованием карбгемоглобина;
3) в лёгких карбгемоглобин (нестойкое соединение гемоглобина и углекислого газа) распадается с освобождением углекислого газа.
С3 Каковы причины малокровия у человека? Укажите не менее 3-х возможных причин
1)большие кровопотери;
2)неполноценное питание (недостаток железа и витаминов и др.);
3)нарушение образования эритроцитов в кроветворных органах.
1) большие кровопотери;
2) нарушение образования эритроцитов в кроветворной ткани;
3) нарушение процессов всасывания железа в тонком кишечнике;
4) недостаток некоторых витаминов, например В12;
5) недостаточное питание;
6) переутомление, отсутствие полноценного отдыха.
С3 Какие особенности эритроцитов человека обеспечивают наиболее полное и быстрое насыщение крови кислородом?
1)Форма двояковогнутого диска увеличивает поверхность эритроцитов, а также обеспечивает быструю и равномерную диффузию кислорода внутрь эритроцита.
Или
Двояковогнутая форма увеличивает поверхность соприкосновения эритроцитов с воздухом лёгочных пузырьков и увеличивает его полезный объём.
2)Эритроциты не имеют ядра и практически не содержат клеточных органоидов, все внутреннее содержимое заполнено гемоглобином.
3)Маленькие размеры эритроцитов , – это приводит к увеличению их числа в единице объема крови, но общее количество кислорода, которое содержится в крови при этом увеличивается.
При уменьшении размеров эритроцитов суммарный объем гемоглобина, транспортирующего газы в крови, увеличивается, поэтому и содержание кислорода в ней может быть больше.
С3 Какие особенности состава и строения эритроцитов человека обеспечивают наиболее полное и быстрое насыщение крови кислородом? Укажите не менее трёх особенностей и поясните их.
1) Очень малые размеры, отсюда – большая концентрация эритроцитов в крови человека и большая суммарная площадь поверхности
2) Эритроциты имеют форму двояковогнутого диска. Это увеличивает площадь поверхности эритроцита.
3) Отсутствие ядер в зрелых эритроцитах человека (молодые эритроциты ядра имеют, но они в дальнейшем исчезают) позволяет разместить больше молекул гемоглобина
Благодаря особенностям строения эритроцитов кровь быстро и в больших количествах насыщается кислородом и доставляет его в химически связанном виде в ткани. А это одна из причин (наряду с четырехкамерным сердцем, полным разделением венозного и артериального кровотоков, прогрессивными изменениями в строении легких и т.д.) гомойотермности (теплокровности).
С3 В чём отличия групп крови, имеющихся у человека? Какие группы крови совместимы при переливании? Людей с какой группой крови считают универсальными донорами и реципиентами?
С3 В чем отличия групп крови человека? Какие группы крови совместимы при переливании? Людей с какими группами считают универсальными донорами и реципиентами?
1.Группа крови определяется по наличию или отсутствию особых белков, содержащихся в плазме (a и b агглютинины) и в эритроцитах (А и В агглютиногены)
2. первая группа крови пригодна для переливания людям с любой группой крови, вторая только для людей со второй и четвёртой группами, третья группа крови пригодна для людей с третьей и четвёртой группами крови, а четвёртая группа крови используется только для людей с четвёртой группой крови;
3. Люди с первой группой – универсальные доноры, с четвертой – универсальные реципиенты
С3 В чём опасность развития плода от брака резус-отрицательной женщины и резус-положительного мужчины?
1) У резус-отрицательной матери и резус-положительного отца может получиться резус-положительный ребенок.
2) Возможен резус конфликт. Через плаценту в кровь женщины поступает чужеродный белок, на который вырабатываются антитела.
3) Во время второй беременности (второй беременности резус-положительным плодом) эти антитела могут сработать против ребенка и вызвать осложнения беременности вплоть до ее прерывания и гемолитическую болезнь новорожденных.
С1 В чем проявляется защитная роль лейкоцитов в организме человека?
С1 В образовавшейся на теле человека ране кровотечение со временем приостанавливается, однако может возникнуть нагноение. Объясните, какими свойствами крови это обусловлено.
ДЫХАТЕЛЬНАЯ СИСТЕМА
С2 Какой процесс изображён на рисунке? Что лежит в основе этого процесса и как изменяется в результате состав крови (А, Б)? Ответ поясните.
1) на рисунке изображен газообмен в легких (между легочным пузырьком и капилляром крови);
2) в основе газообмена лежит диффузия – проникновение газов из места с большим давлением в место с меньшим давлением;
3) в результате газообмена венозная кровь (А), превращается в артериальную (Б).
КРОВЬ КРОВЕНОСНАЯ СИСТЕМА
Внутренняя среда организма
С3 Как осуществляется взаимосвязь крови, лимфы и тканевой жидкости?
С3. Как осуществляется взаимосвязь крови, лимфы и тканевой жидкости? Ответ поясните.
1) из жидкой части крови образуется тканевая жидкость, которая частично может проникать обратно в кровь;
2) тканевая жидкость просачивается в лимфатические капилляры, и образуется лимфа;
3) лимфа по лимфатическим сосудам поступает в вены большого круга кровообращения и смешивается с кровью.
Источник
Внутренняя среда организма складывается из 3 тесно взаимосвязанных компонентов: кровь, лимфа и межклеточная жидкость (тканевая,
интерстициальная).

В капиллярах стенка состоит из одного слоя клеток, что делает возможным газообмен и обмен питательными веществами с окружающими капилляр тканями. Через стенку
сосуда газы, питательные вещества и вода из крови устремляются к клеткам. В клетках происходит тканевое дыхание, в межклеточную
жидкость выделяется углекислый газ, который затем поступает в кровь, соединяется с гемоглобином и, достигая альвеол в легких,
удаляется из организма.
У лимфатических сосудов есть особенность, которую вы всегда обнаружите на рисунке: они начинаются слепо, в отличие от кровеносных
сосудов. Лимфу в них образует вода, поступающая из межклеточной жидкости. Лимфа участвует в перераспределении жидкости в организме.
Состав и функции крови
Кровь – важнейшая составляющая внутренней среды организма. Напомню, что эта ткань относится к жидким соединительным
тканям и состоит из плазмы (на 55%) и форменных элементов (оставшиеся 45%). У взрослого человека объем крови составляет 4-6 литра.

Давайте систематизируем и углубим наши знания о крови. Кровь состоит из:
- Плазмы на 55%
- Трофическую (питательную) – белки плазмы являются источником аминокислот
- Буферную – поддерживают кислотно-щелочное состояние (pH крови = 7,35-7,4)
- Транспортную – белки глобулины транспортируют питательные вещества – жиры, а также гормоны, витамины
- Защитную – в крови циркулируют антитела, белки крови (в частности фибриноген) обеспечивают гемостаз
(свертывание крови) - Форменных элементов
- Эритроциты – от греч. ἐρυθρός — красный и κύτος — вместилище, клетка
- C кислородом – оксигемоглобин
- C углекислым газом – карбгемоглобин
- C угарным газом – карбоксигемоглобин
- Лейкоциты – от др.-греч. λευκός — белый и κύτος — вместилище, тело
- Осуществлении фагоцитоза
- Обезвреживании ядов, токсинов
- Участие в клеточном и гуморальном иммунитете
- Тромбоциты – от греч. θρόμβος — сгусток и κύτος — клетка
В состав плазмы входят различные белки: альбумины, глобулины, фибриноген, ионы Ca2+, K+,
Mg2+, Na+, Cl-, HPO4-, HCO3-.
Плазма выполняет ряд важных функций:
Отметьте, что плазма крови без фибриногена называется сывороткой (она не свертывается, в отличие от плазмы).
Концентрация соли NaCl (хлорида натрия) в крови примерно постоянна и составляет 0,9%.

К ним относятся:
Эритроциты – красные кровяные тельца, основная их
функция – дыхательная – перенос газов: кислорода от альвеол легких к тканям и углекислого газа от тканей к альвеолам.
В 1 мм3 крови находится около 4-5 млн.
Основной белок эритроцита – гемоглобин, состоящий из железосодержащего гема (Fe) и белка глобина.

Эритроциты имеют характерную двояковогнутую форму, лишены ядра (в отличие от эритроцитов других животных, например,
эритроциты лягушки содержат ядро). Их маленький диаметр и способность складываться помогает им проникать через самые
мельчайшие сосуды нашего тела – капилляры, диаметр которых меньше, чем диаметр эритроцита!

Эритроциты дифференцируются в красном костном мозге (в губчатом веществе костей), срок их жизни составляет 120 дней. К окончанию жизненного цикла их форма становится шарообразной. Такие старые шарообразные эритроциты
задерживаются в печени и селезенке, которая называется кладбищем эритроцитов. Здесь они разрушаются, а их остатки
фагоцитируются.
Из статьи о легких вы уже знаете, что гемоглобин образует соединения:
Сродство гемоглобина к угарному газу в 300 раз выше, чем к кислороду, поэтому карбоксигемоглобин
очень устойчив.
Вообразите: при содержании во вдыхаемом воздухе 0,1% угарного газа 80% от общего количества гемоглобина
связываются с угарным газом, а не кислородом! Угарный газ образуется при пожарах в замкнутом пространстве,
отравиться им и потерять сознание можно очень быстро. Если немедленно не вынести человека на свежий воздух,
то летальный исход становится неизбежным.

Запомните, что у людей, живущих в горной местности, количество эритроцитов в крови несколько выше, чем у
обитателей равнины. Это связано с тем, что концентрация кислорода в горах ниже средней, вследствие чего
компенсаторно увеличивается содержание эритроцитов в крови, чтобы переносить больше кислорода.

Лейкоциты – белые кровяные тельца, имеющие ядро и не содержащие гемоглобин. Дифференцируются в красном костном мозге,
лимфатических узлах. С кровью переносятся к тканям организма, где проходит основная часть их жизненного цикла: они выполняют защитную функцию, которая заключается в:
Число лейкоцитов в 1 мм3 крови 4-9 тысяч. Лейкоциты разнообразны по форме и строению, среди них встречаются
нейтрофилы, лимфоциты, моноциты. Их деятельность направлена на защиту организма: они обеспечивают иммунитет.
Если лейкоциты
увеличены в анализе крови, то врач может заподозрить инфекционный процесс: во время него лейкоциты возрастают, чтобы
уничтожить бактерии и вирусы, попавшие в организм.

Около 25-40% от всех лейкоцитов составляют лимфоциты, в популяции которых можно обнаружить T- и B-лимфоциты. Они
выполняют важнейшие функции, благодаря которым формируется иммунитет.
T-лимфоциты созревают в специальном органе – тимусе (вилочковой железе). Они обеспечивают клеточный иммунитет, выявляют
и уничтожают мутантные (раковые) клетки, миллионы которых ежедневно образуются даже у здорового человека. Уничтожают в организме подобные клетки T-лимфоциты путем фагоцитоза.

Фагоцитоз – процесс, при котором клетки захватывают и переваривают твердые частицы (другие клетки). Создатель фагоцитарной
теории иммунитета И.И. Мечников провел опыт, который наглядно демонстрирует, что лейкоциты способны выходить из кровеносного
русла в ткани (при воспалении), фагоцитировать попавшие в рану чужеродные белки, бактерии.

Гуморальный (греч. humor – жидкость) иммунитет обеспечивается B-лимфоцитами. После контакта с антигеном (чужеродное вещество в организме) B-лимфоцит
превращается в плазмоцит – клетку, которая вырабатывает антитела. Антитела (иммуноглобулины) – белковые молекулы, препятствующие размножению микроорганизмов и нейтрализующие выделяемые ими токсины.
Часть плазмоцитов может оставаться в организме после устранения антигена многие годы, эта часть обеспечивает иммунную память, благодаря которой
в случае повторного попадания того же антигена – человек не заболеет, либо легко и быстро перенесет болезнь.

Устаревшее название тромбоцитов – кровяные пластинки. Тромбоциты – клеточные элементы крови, представляющие собой круглые безъядерные
образования. В 1 мм3 насчитывается 250-400 тысяч клеток.
Дифференцируются (образуются) тромбоциты в красном костном мозге. На их поверхности имеются рецепторы,
которые активируются при повреждении кровеносного русла. Они играют важную роль в процессе
гемостаза – свертывания крови, предотвращают кровопотерю.

Процесс гемостаза требует нашего особого внимания. Гемостаз (от греч. haima – кровь + stasis – стояние) –
процесс свертывания крови, являющийся важнейшим защитным механизмом от кровопотери. Активируется при
повреждении кровеносных сосудов.
Гемостаз зависит от множества факторов, среди которых важное место отводится ионам Ca2+. Гемостаз происходит
следующим образом: при повреждении сосуда из тромбоцитов высвобождаются тромбопластины, которые способствуют переходу протромбина в тромбин. В свою очередь, тромбин способствует переходу растворимого белка крови, фибриногена, в нерастворимый фибрин.

Истинный тромб образуется при переходе растворимого белка крови, фибриногена, в нерастворимый фибрин, нити которого
создают “сетку”, где застревают эритроциты. В результате останавливается кровотечение из сосуда.

Группы крови и трансфузия (переливание)
Не могу утаить, что существует более 30 различных систем групп крови. Наиболее широко используемая (в том числе и в
медицине при переливании крови) – система AB0. Она основана на том факте, что на мембране эритроцитов располагаются различные
антигены, определенные генетически. На основании сходства этих антигенов людей делят на 4 группы.
Наибольшее значение в системе AB0 имеют агглютиногены A и B, расположенные на поверхности эритроцитов, и агглютинины α и β.
Если встречаются два одинаковых компонента, к примеру: агглютиноген A и агглютинины α, то начинается реакция агглютинации –
эритроциты начинают склеиваться.

Агглютинацию ни в коем случае нельзя допустить, она может сильно ухудшить состояние пациента
вплоть до летального исхода. При переливании крови строго соблюдается следующее правило: переливается только кровь,
относящаяся к одной и той же группе. Это наилучший вариант, однако, и здесь бывают неудачные переливания, заканчивающиеся
гибелью пациента, ведь ранее я уточнил, что система AB0 является лишь одной из 30 систем групп крови, а учесть их все
не представляется возможным.
Ниже вы найдете схему, где группы крови (по системе AB0) проверяют на совместимость. Реципиентом называют того, кому переливают кровь,
а донором – от кого переливают. Если вы видите сгустки эритроцитов, то это значит, что произошла агглютинация, и переливание крови от донора к реципиенту ни к чему хорошему не приведет.

В рамках заданий ЕГЭ (по опыту решений) переливанию подвергаются именно эритроциты, то есть агглютиногены. Для более полного понимания рассмотрим два случая.
1) При переливании крови от донора 0 к реципиенту A (II) агглютинации не происходит (кровь донора не содержит агглютиногенов).
2) При переливании крови от донора A к реципиенту 0 (I) агглютинация происходит (кровь донора содержит агглютиноген A).

Из-за того, что вместе оказываются агглютинин α и агглютиноген A между эритроцитами начинается агглютинация – они
склеиваются.
Резус-фактор (Rh-фактор) и резус-конфликт
Помимо агглютиногенов системы AB0 на поверхности эритроцитов могут присутствовать резус-антигены. “Могут” – потому что
у большинства людей они есть (85%), а у некоторых резус-антигены отсутствуют (15%). Если данные белки имеются, то
говорят, что у человека положительный резус-фактор, если белки отсутствуют – отрицательный резус-фактор.

Особую важность приобретает резус-фактор у матери и плода. Если женщина резус-отрицательна, а плод
резус-положителен, то при повторной беременности существует риск резус-конфликта: антитела матери начнут атаковать
эритроциты плода, которые разрушатся и плод погибент от гипоксии (нехватки кислорода).

Заметьте – при первой беременности нет угрозы резус-конфликта. Если женщина резус-положительна, то никакого резус-конфликта
не может быть априори, независимо от того резус-положительный или резус-отрицательный плод.
Опасность резус-конфликта вовсе не значит, что вы должны выбирать свою половинку руководствуясь наличием или отсутствием
резус-антигенов)) Они не должны вам препятствовать!) Доложу вам, что на сегодняшней день арсенал лекарственных препаратов
помогает устранить резус-конфликт и успешно рожать женщине во 2, 3, и т.д. раз. Главное, чтобы беременность протекала под наблюдением врача с самого раннего срока.

Лимфа, лимфатическая система
Лимфа, как и кровь, образует внутреннюю среду организма. В самом начале статьи была схема, на которой видно, как кровь,
тканевая жидкость и лимфа соотносятся друг с другом. В норме избыток жидкости выводится из тканей по лимфатическим сосудам.
Состав лимфы близок к плазме крови: в лимфе можно обнаружить антитела, фибриноген и ферменты. Лимфатические сосуды
впадают в лимфатические узлы, которые М.Р. Сапин, выдающийся анатом, называл “сторожевые посты”. Здесь появляются
лимфоциты – важнейшее звено иммунитета, и происходит фагоцитоз бактерий.
Подытоживая полученные знания, давайте соберем вместе функции лимфатической системы:
- Защитная – в лимфатических узлах образуются лимфоциты, происходит фагоцитоз бактерий
- Транспортная – в лимфатические сосуды кишечника всасываются жиры
- Возврат белка в кровь из тканевой жидкости
- Перераспределение жидкости в организме

Куда же течет вся лимфа с жирами, лимфоцитами и белками? В конечном итоге лимфатическая система соединяется с кровеносной,
впадая в нее в области левого и правого венозных углов. Таким образом, лимфатическая и кровеносная системы теснейшим образом
связаны друг с другом.

Виды иммунитета
Мы уже отчасти касались темы иммунитета в нашей статье и отмечали особый вклад И.И. Мечникова в создании фагоцитарной теории
иммунитета.
Иммунитет – способ защиты организма и поддержания гомеостаза внутренней среды, предупреждающий размножение
в организме инфекционных агентов. Выделяют естественный и искусственный иммунитет.

Естественный иммунитет включает в себя врожденный (видовой) и приобретенный (индивидуальный).
Врожденный иммунитет заключается в невосприимчивости человека к болезням животных: человек не может заболеть многими
болезнями собак, и, наоборот, собаки невосприимчивы ко многим заболеваниям человека.
Приобретенный (индивидуальный) иммунитет бывает активный и пассивный.
- Активный
- Пассивный
Вырабатывается человеком в ответ на внедрение инфекционного агента через 10-12 дней (образование антител)
Состоит в переходе материнских антител в кровь плода, также антитела поступают вместе
с грудным молоком. Пассивным этот вид иммунитета называется потому, что сам организм антитела не вырабатывает, а использует уже готовые.

Искусственный иммунитет делится на активный и пассивный.
Активный искусственный создается с помощью прививок – вакцинации. При вакцинации в организм здорового человека вводят разрушенные или ослабленные инфекционные агенты (вакцину), с которыми лейкоциты легко справляются, в результате чего вырабатываются антитела. Это напоминает тренировку перед матчем: когда настоящий вирус/бактерия попадут
в организм, лейкоцитам будет все о них известно, и они быстро выработают антитела, за счет чего заболевание п?