Плазма и сыворотка крови происхождение и состав лимфы

Плазма и сыворотка крови происхождение и состав лимфы thumbnail

Внутренняя среда организма — это кровь, лимфа и жидкость, заполняющая промежутки между клетками и тканями. Кровеносные и лимфатические сосуды, пронизывающие все органы человека, имеют в своих стенках мельчайшие поры, через которые могут проникать даже некоторые клетки крови. Вода, составляющая основу всех жидкостей в организме, вместе с растворенными в ней органическими и неорганическими веществами легко проходит через стенки сосудов. Вследствие этого химический состав плазмы крови (то есть жидкой части крови, не содержащей клеток), лимфы и тканевой жидкости во многом одинаков. С возрастом существенных изменений химического состава этих жидкостей не происходит. В то же время различия в составе указанных жидкостей могут быть связаны с деятельностью тех органов, в которых эти жидкости находятся.

Гистогематический барьер– это барьер между кровью и тканью. Впервые были обнаружены советскими физиологами в 1929 г. Морфологическим субстратом гистогематического барьера является стенка капилляров, состоящая из:

1) фибриновой пленки;

2) эндотелия на базальной мембране;

3) слоя перицитов;

4) адвентиции.

В организме они выполняют две функции – защитную и регуляторную.

Защитная функциясвязана с защитой ткани от поступающих веществ (чужеродных клеток, антител, эндогенных веществ и др.).

Регуляторная функциязаключается в обеспечении постоянного состава и свойств внутренней среды организма, проведении и передаче молекул гуморальной регуляции, удалении от клеток продуктов метаболизма.

Физиологические функции крови:

1. дыхательная (перенос кислорода от легких к тканям и углекислого газа от тканей к легким)

2. трофическая (доставка питательных веществ, минеральных солей, витаминов от органов пищеварения к тканям)

3. экскреторная (удаление из тканей конечных продуктов метаболизма)

4. терморегуляторная (регуляция температуры тела путем охлаждения энергоемких органов и наоборот)

5. гомеостатическая (поддержание постоянства среды организма)

6. регуляция вводно-солевого обмена между кровью и тканями

7. защитная (участие в клеточном и гуморальном иммунитете, в свертывании)

8. гуморальная регуляция (перенос гормонов и медиаторов)

9. креаторная (перенос макромолекул, которые осуществляют межклеточную передачу информации)

Общее количество крови в организме взрослого человека в норме составляет 4-6 литров. В покое в сосудистой системе находится 60-70% крови – циркулирующая кровь, оставшаяся кровь – в кровяных депо – запасная, депонированная. В крови важнее плазма, т. к. она поддерживает давление крови. Кровь контактирует с клетками через межтканевую жидкость (искл – косный мозг и селезенка). Кровь состоит из жидкой части – плазмы и клеток – форменных элементов: эритроциты, тромбоциты, лейкоциты. Плазма крови на 90% состоит из воды и на 10% из белков и минеральных солей.
22. Физико-химические свойства плазмы крови. Осмотическое и онкотическое давление.

1. Вязкость крови – обусловлена наличием в ней белков и форменных элементов. Если вязкость воды принять за 1, то вязкость плазмы будет равна 1,7 – 2,2, а вязкость цельной крови около 5,1. Сгущению крови, т.е. повышению её вязкости способствует потеря жидкости, например, при неукротимой рвоте, диарее, обширных ожогах, усиленной физической работе (жидкость удаляется с потом), а также употребление мясной пищи (мясо – белковый продукт, а повышение содержания в крови белка ведёт к повышению вязкости крови). Повышение вязкости вызывает затруднение работы сердца и замедляет кровоток.

2. Относительная плотность (удельный вес) крови – зависит от количества эритроцитов, содержания в них гемоглобина и белкового состава плазмы крови. Относительная плотность крови взрослого человека равна 1050 – 1060, а плазмы 1029 – 1034. У новорожденных она составляет 1060 – 1080, т.е. несколько выше, чем у взрослых, а у мужчин – 1057 т. е. выше, чем у женщин – 1053, что объясняется неодинаковым содержанием в крови эритроцитов. Снижению удельного веса крови способствует белковое голодание (когда человек употребляет в основном жирную и углеводную пищу), а также анемия (снижение количества гемоглобина и эритроцитов).

3. Осмотическое давление – зависит в основном от растворённых в крови и тканях минеральных солей (NaCl и др.). Оно характеризуется постоянством и равно 7,6 – 8,1 атм. Благодаря этому вода равномерно распределяется между клетками и тканями. По величине осмотического давления в сравнении с осмотическим давлением крови различают следующие растворы:

а) Солевой раствор, имеющий равное с кровью осмотическое давление, называется изотоническим (физиологическим). Примером такого раствора является 0,9 % раствор NaCl, который переливают при кровопотерях, интоксикациях, используют в качестве растворителя многих лекарственных веществ для внутривенного введения.

Читайте также:  Пузыри лимфы на руках

б) Солевой раствор с более высоким осмотическим давлением, чем в плазме крови называется гипертоническим. Например, 9 % раствор NaCl – его можно использовать только для наружного применения и ни в коем случае для внутривенного, так как при этом из-за стремления разбавить высокую концентрацию солей в крови и межклеточной жидкости, вода выйдет из клеток, и они сморщатся.

в) Солевой раствор с более низким осмотическим давлением, чем в крови и тканях, называется гипотоническим, например 0,3 % раствор NaCl. Эритроциты, помещённые в такой раствор, набухают, в результате перехода в них воды, так как осмотическое давление в эритроцитах будет выше, чем в таком растворе.

4. Онкотическое давление – обусловлено содержащимися в плазме крови белками-альбуминами, которые обладают гидрофильностью, т. е. способностью притягивать к себе воду. Благодаря этому жидкость удерживается в сосудистом русле. Величина онкотического давления колеблется в пределах 25 – 30 мм. рт. ст.

5. Реакция крови – определяется концентрацией ионов водорода. В норме она слабощелочная. Водородный показатель рН для венозной крови равен 7,36; для артериальной – 7,4. Только в этих пределах могут активно работать ферментные системы клеток. Поэтому в норме рН крови всегда сохраняется на постоянном уровне, несмотря на беспрерывное поступление в кровь кислых и щелочных продуктов обмена. Поддержание постоянства кислотно-основного состояния (КОС) обеспечивается буферными системами крови. Существуют карбонатная, фосфатная, гемоглобиновая буферные системы и буферная система белков плазмы.
23. Состав плазмы крови. Лимфа. Сыворотка крови. Коллоидная стабильность и вязкость крови.

Плазма крови на 90% состоит из воды, в которой растворены соли и низкомолекулярные органические вещества, а также содержатся липиды, белки и их комплексы. Белки (7-8 %) представлены:

– фибриногеном, участвующим в процессе свертывания крови

– альбумином (60% белков), низкомолекулярные белки, транспортирующим малорастворимые вещества, в т.ч. лекарственные

– глобулином, образующим антитела (высокомолекулярный белок)

Плазма обеспечивает постоянство объема внутрисосудистой жидкости и кислотно-щелочное равновесие (КЩР), участвует в переносе активных веществ и продуктов метаболизма.

Плазма крови, лишенная фибриногена, называется сывороткой. Сыворотка не свертывается. Сыворотка остается после свертывания крови (при удалении сгустка).

Сы́воротка кро́ви — плазма крови, лишённая фибриногена. Сыворотки получают либо путём естественного свёртывания плазмы (нативные сыворотки), либо осаждением фибриногена ионами кальция. В сыворотках сохранена большая часть антител, а за счёт отсутствия фибриногена резко увеличивается стабильность.

Сыворотку выделяют при анализе крови на инфекционные заболевания, при оценке эффективности вакцинации (титр антител), а также при биохимическом анализе крови.

Имму́нные сы́воротки (антисы́воротки) — сыворотки крови, содержащие антитела против определённых антигенов. Их вводят больному в лечебных целях или в качестве временной защиты (для создания пассивного иммунитета) от различных заболеваний[1]. Иммунные сыворотки используют в качестве лекарственных препаратов при многих инфекционных заболеваниях (столбняке, дифтерии, гриппе) и отравлениях (яды змей, ботулотоксин

).

Коллоидная стабильность плазмы крови обусловлена характером гидратации белковых молекул и наличием на их поверхности двой­ного электрического слоя ионов, создающего поверхностный или фи-потенциал. Частью фи-потенциала является электрокинетичес­кий (дзета) потенциал. Дзета-потенциал — это потенциал на гра­нице между коллоидной частицей, способной к движению в элект­рическом поле, и окружающей жидкостью, т.е. потенциал поверх­ности скольжения частицы в коллоидном растворе. Наличие дзета-потенциала на границах скольжения всех дисперсных частиц фор­мирует на них одноименные заряды и электростатические силы от­талкивания, что обеспечивает устойчивость коллоидного раствора и препятствует агрегации. Чем выше абсолютное значение этого по­тенциала, тем больше силы отталкивания белковых частиц друг от друга. Таким образом, дзета-потенциал является мерой устойчивости коллоидного раствора. Величина этого потенциала существенно выше у альбуминов плазмы, чем у других белков. Поскольку альбуминов в плазме значительно больше, коллоидная стабильность плазмы крови преимущественно определяется этими белками, обеспечива­ющими коллоидную устойчивость не только других белков, но и углеводов и липидов.

Вязкость — это способность оказывать сопротивление течению жидкости при перемещениях одних частиц относительно других за счет внутреннего трения. В связи с этим, вязкость крови представ­ляет собой сложный эффект взаимоотношений между водой и мак­ромолекулами коллоидов с одной стороны, плазмой и форменными элементами — с другой. Поэтому вязкость плазмы и вязкость, цель­ной крови существенно отличаются: вязкость плазмы в 1,8 — 2,5 раза выше, чем воды, а вязкость крови выше вязкости воды в 4- 5 раз. Чем больше в плазме крови содержится крупномолекулярных белков, особенно фибриногена, липопротеинов, тем выше вязкость плазмы. При увеличении количества эритроцитов, особенно их со­отношения с плазмой, т.е. гематокрита, вязкость крови резко воз­растает. Повышению вязкости способствует и снижение суспензион­ных свойств крови, когда эритроциты начинают образовывать агре­гаты. При этом отмечается положительная обратная связь — по­вышение вязкости, в свою очередь, усиливает агрегацию эритроци­тов — что может вести к порочному кругу. Поскольку кровь — неоднородная среда и относится к неньютоновским жидкостям, для которых свойственна структурная вязкость, постольку снижение дав­ления потока, например, артериального давления, повышает вяз­кость крови, а при повышении давления из-за разрушения струк­турированности системы — вязкость падает.
24. Клеточный состав крови. Эритроциты: строение и функции. Гемоглобин, виды гемоглобина. Причины эритропении и эритроцитоза.

Читайте также:  Питание для чистки лимфы

Эритроциты (Э) – это высокоспециализированные безъядерные клетки крови. Ядро у них утрачивается в процессе созревания. Эритроциты имеют форму двояковогнутого диска. В среднем их диаметр около 7,5 мкм, а толщина на периферии 2,5 мкм. Благодаря такой форме увеличивается поверхность эритроцитов для диффузии газов. Кроме того, это возрастает их пластичность. За счет высокой пластичности, они деформируются и легко проходят по капиллярам. У старых и патологических эритроцитов пластичность низкая. Поэтому они задерживаются в капиллярах ретикулярной ткани селезенки и разрушаются там. Мембрана эритроцитов и отсутствие ядра обеспечивают их главную функцию – перенос кислорода и участие в переносе углекислого газа. Мембрана эритроцитов непроницаема для катионов, кроме калия, а ее проницаемость для анионов хлора, гидрокарбонат анионов и гидроксил анионов в миллион раз больше. Кроме того она хорошо пропускает молекулы кислорода и углекислого газа. В мембране содержится до 52% белка. В частности, гликопротеины определяют групповую принадлежность крови и обеспечивают ее отрицательный заряд. В нее встроена Nа/К-АТФаза, удаляющая из цитоплазмы натрий и закачивающая ионы калия. Основную массу эритроцитов составляет хемопротеин гемоглобин. Кроме того в цитоплазме содержатся ферменты карбоангидраза, фосфатазы, холинэстераза и другие ферменты.

Функции эритроцитов:

1. Перенос кислорода от легких к тканям.

2. Участие в транспорте СО2 от тканей к легким.

3. Транспорт воды от тканей к легким, где она выделяется в виде пара.

4. Участвуют в свертывании крови, выделяя эритроцитарные факторы свертывания.

5. Переносят аминокислоты на своей поверхности.

6. Участвуют в регуляции вязкости крови, вследствие пластичности. В результате их способности к деформации, вязкость крови в мелких сосудах меньше, чем крупных.

Гемоглобин – это жизненно необходимый организму белок, который выполняет несколько функций, но основная – перенос кислорода к тканями и клеткам. Дефицит гемоглобина может привести к серьезным последствиям. Именно этот белок придает крови насыщенный красный цвет, благодаря содержанию железа в нем. Гемоглобин содержится в эритроцитах и состоит из соединений железа и глобина (белка).
Гемоглобин должен содержаться в крови человека в достаточном количестве, чтобы ткани получали необходимое им количество кислорода. Каждая молекула гемоглобина содержит в себе атомы железа, которые и связывают кислород.

В крови человека белок присутствует в нескольких разновидностях. Выделяют следующие виды гемоглобина:

Оксигемоглобин. Это гемоглобин со связанными молекулами кислорода. Он содержится в артериальной крови, поэтому она ярко-алая.

Карбоксигемоглобин. Гемоглобин со связанными молекулами углекислого газа. Они транспортируются в легкие, где углекислый газ выводится, а гемоглобин снова насыщается кислородом. Этот вид белка сдержится в венозной более темной и густой и крови.

Гликированный гемоглобин. Это неразделимое соединение белка и глюкозы. Этот вид глюкозы может циркулировать в крови достаточно долго, поэтому его используют для определения уровня сахара в крови.

Фетальный гемоглобин. Этот гемоглобин можно встретит в крови плода или новорожденного ребенка в первые несколько недель жизни. Это более активный в плане переноса кислорода гемоглобин, но быстро разрушающийся под воздействием факторов окружающей среды.

Метгемоглобин. Это гемоглобин, связанный с различными химическими агентами. Его рост может говорить об отравлении организма. Связи белка и агентов достаточно прочные. При повышении уровня этого вида гемоглобина нарушается насыщаемость тканей кислородом. Сульфгемоглобин. Этот вид белка появляется в крови при приеме различных препаратов. Его содержание обычно не превышает 10%.

Читайте также:  Народные средства при лечении рака лимфы

Источник

Промежуточная среда, через которую в клетки попадают кислород, энергетические вещества, а из них выходят продукты обмена белков, жиров, углеводов, называется межклеточным пространством.

Из межклеточной жидкости продукты метаболизма поступают в кровь и лимфу, и в процессе кровообращения и лимфообращения выводится через мочевую, дыхательную систему, кожные покровы. Таким образом, тканевая жидкость, кровь и лимфа образуют внутреннюю среду организма, которая нужна для существования и нормального функционирования органов и организма в целом.

Тканевая жидкость

Тканевая жидкость – это вещество, которое находится между клетками живого организма, омывает их, заполняет интерстициальное пространство. Тканевая жидкость образуется из плазмы — под действием гидростатического давления на стенки сосудов, жидкая часть крови через капилляры поступает в межклеточное пространство.

Тканевая жидкость

Где находится тканевая жидкость?

Основная масса сосредоточена в интерстициальном пространстве, окружает клетки, но жидкость не накапливается в тканях, часть ее переходит в лимфатическое русло и затем возвращается в кровеносную систему, часть испаряется при потоотделении. В случаи нарушения циркуляции жидкого вещества развиваются отеки.

Состав тканевой жидкости

Вода – основной компонент внутренней среды, составляет около 65% от массы тела человека (40% — внутри клеток, 25% — внеклеточное пространство). Она находится в связанном состоянии (с белками, например, коллагеном) в межклеточном веществе, и свободном — в кровеносном и лимфатическом русле.

Электролитный состав: натрий, калий, кальций, магний, хлор и др. Коллагеновые волокна тканевой жидкости состоят из гиалуроновой кислоты, хондроитинсульфата, белков интерстиция. Также содержится кислород, много питательных веществ (глюкозы, аминокислот и жирных кислот), продукты обмена: CO2, мочевина, креатинин, азотистые соединения. В межклеточной среде присутствует фиброциты, макрофаги.

Функция тканевой жидкости в организме человека

Тканевая жидкость – это транспортная система, которая обеспечивает взаимосвязь между водными структурами организма. Например, в пищеварительный тракт попадает еда, там под воздействием соляной кислоты, она расщепляется на молекулы и в растворенном виде поступает в плазму крови, питательные вещества разносятся по организму. Затем продукты метаболизма выводятся в межклеточное пространство, и снова переходят в кровь и лимфу и поступают к выделительным органам (почки, кожные покровы и др.).

Защитная – в тканевой среде находятся лимфоциты, макрофаги, тучные клетки, которые осуществляют фагоцитоз, иммунные реакции.

Питательная – клетки получают кислород, глюкозу путем поглощения этих веществ из межклеточного пространства.

Кровь

Функции и состав кровиСостав крови

Кровь — это жидкая структура организма, которая циркулирует в замкнутой системе, составляющая внутренней среды, делится на плазму и форменные элементы (тромбоциты, эритроциты, лимфоциты).

Плазма имеет желтоватый оттенок, прозрачная, на 90% состоит из воды, 1% отводится на соли и электролиты, углеводы, липиды занимают 1%, белки — 8%. Благодаря минеральным солям и белкам поддерживается стабильная кислотность внутренней среды (7,35-7,45рН).

Основные функции плазмы крови

Переносит кислород к тканевым структурам и органам, обеспечивая их жизнедеятельность, функционирование.

Выводит из организма продукты распада, забирает углекислый газ и доставляет его в легкие, где он выводится с выдыхаемым воздухом.

Защитная функция — способна связывать токсические вещества, разрушать инородные частицы и инфекционные агенты.

Лимфа

Лимфа — это бесцветная прозрачная жидкость, обеспечивающая отток тканевой жидкости от интерстициального пространства.

Лимфа образуется через фильтрацию тканевой жидкости в лимфатические капилляры. Формируется из плазмы и форменных элементов белой крови (лимфоцитов). В организме взрослого человека находится 1-2 литра лимфы. Она собирается в лимфатические капилляры, затем переходит в периферические лимфатические сосуды, попадает в лимфатические узлы, где очищается от чужеродных тел, и по системе грудного протока впадает в подключичную вену.

Жидкость постоянно циркулирует в организме, поступает через капилляры в интерстициальное пространство, где абсорбируется венами. Часть жидкого вещества возвращается в лимфатическое русло и из неё поступает в кровь, такой механизм обеспечивает возврат белков в кровеносную систему.

Основные функции лимфы

Предотвращает изменения состава и объёма тканевой жидкости, обеспечивает равномерное ее распределение в организме. Также обеспечивает обратное поступление белка из межклеточного пространства в кровь, поглощение из желудочно-кишечного тракта продуктов обмена, в основном липидов.

Источник