Орган где формируются клетки крови и лимфы

Орган где формируются клетки крови и лимфы thumbnail

КРОВЕТВОРНЫЕ ОРГАНЫ (син.: органы кроветворения, гемопоэтические органы) — органы, главной функцией которых является образование форменных элементов крови. К кроветворным органам человека относят вилочковую железу (см.), костный мозг (см.), лимфатические узлы (см.), селезенку (см.). Название «кроветворные органы» в значительной мере условно, т. к. кроветворение в них, за исключением костного мозга, осуществляется в основном лишь в антенатальном периоде, а после рождения интенсивность его быстро снижается. Ввиду тесной функциональной связи Кроветворных органов и крови Г. Ф. Ланг (1939) предложил объединить их под общим понятием «система крови».

Морфологические и функциональные свойства кроветворной ткани исследовал А. А. Максимов. Он обосновал унитарную теорию кроветворения, в развитии к-рой приняли участие многие русские исследователи. Метод клонирования клеток, разработанный Тиллом и Мак-Каллоком (J. Е. Till, E. A. McCulloch, 1971), позволил уточнить теорию А. А. Максимова.

С. П. Боткин (1875) впервые указал на роль селезенки в депонировании крови и высказал предположение о влиянии нервной системы на функцию К. о. Работами В. Н. Черниговского и А. Я. Ярошевского (1953), Я. Г. Ужанского (1968), Н. А. Федорова (1976), Меткалфа и Мура (D. Metcalf, М. А. Moore, 1971) показано важное значение нервных и гуморальных факторов в регуляции деятельности К. о. В 1927 г. М. И. Аринкин предложил метод пункции грудины (см. Стернальная пункция) для прижизненного исследования костного мозга.

В процессе эволюции происходит изменение топографии кроветворения, усложнение структуры и дифференциация функций К. о. У беспозвоночных, которые еще лишены четкой органной локализации кроветворной ткани, клетки гемолимфы (амебоциты) рассеяны диффузно. Очаги кроветворения, имеющие органную специфику, впервые появляются в стенке пищеварительного канала у низших позвоночных (круглоротые, двоякодышащие рыбы). В этих очагах основу составляет ретикулярная ткань, имеются широкие капилляры (синусоиды). У хрящевых и костистых рыб формируется обособленный К. о.— селезенка, появляется вилочковая железа. Очаги кроветворения, гл. обр. гранулоцитопоэза, имеются также в мезонефросе, интерренальной железе, гонадах, эпикарде. У костных ганоидов (панцирная щука) впервые отмечается локализация кроветворения в костной ткани, а именно в полости черепа над областью IV желудочка. На этом этапе эволюции стенка кишки уже не является основным К. о., однако у рыб и вышестоящих классов позвоночных в ней сохраняются очаги лимфоцитопоэза. У хвостатых амфибий кроветворение сосредоточено в селезенке, краевой зоне печени, в мезонефросе, эпикарде. У бесхвостых амфибий К. о. являются селезенка и костный мозг, который функционирует только сезонно (весной). Небольшие скопления лимф, ткани — примитивные предшественники лимф, узлов — появляются в подмышечных и паховых областях. Т. о., у земноводных намечается органное разделение собственно кроветворной и лимф, ткани, к-рое становится более отчетливым на следующих стадиях эволюции. У рептилий и птиц кроветворение сосредоточивается в костном мозге; селезенка выполняет в основном функции лимфоцитопоэза и депонирования крови. У водоплавающих птиц возникает две пары лимф, узлов. У птиц, в отличие от других позвоночных, наряду с вилочковой железой имеется своеобразный лимфоэпителиальный орган — фабрициева сумка, с к-рой связано происхождение B-лимфоцитов, осуществляющих гуморальные реакции иммунитета.

У млекопитающих и человека основным К. о. становится костный мозг, развивается система лимф, узлов. Селезенка утрачивает функцию образования клеток красного ряда, гранулоцитов, мегакариоцитов и только у некоторых млекопитающих {однопроходные, сумчатые, насекомоядные, низшие грызуны) сохраняет очаги эритроцитопоэза.

На ранних стадиях эмбрионального развития человека примитивные клетки крови образуются в стенке желточного пузыря и вокруг сосудов в мезенхиме тела зародыша. Со 2-го до 5-го мес. развития основным К. о. является печень, в к-рой вначале преобладает интраваскулярный гемопоэз над экстраваскулярным, впервые появляются гранулоциты, Мегакариоциты. Селезенка как К. о. активно функционирует с 5-го по 7-й мес. развития. В ней осуществляется эритроцито-, гранулоцито- и мегакариоцитопоэз, лимф. ткань развита еще слабо. Активный лимфоцитопоэз возникает в селезенке с конца 7-го мес. внутриутробного развития. В закладках лимф, узлов, образующихся на 2-м мес. развития, имеет место универсальный гемопоэз, который в дальнейшем исчезает; лимфоцитопоэз появляется на 11-й нед., но заметно нарастает во второй половине внутриутробного развития. В антенатальном и постнатальном периоде основное значение в формировании и функционировании лимфоидных органов принадлежит вилочковой железе, развитие к-рой в фило- и онтогенезе предшествует образованию лимф, узлов. С 5-го мес. развития основным К. о. становится костный мозг.

В раннем детском возрасте во всех плоских и длинных трубчатых костях содержится красный (деятельный) костный мозг, который после 4 лет постепенно замещается жировыми клетками. К 25 годам диафизы трубчатых костей уже целиком заполнены желтым (жировым) костным мозгом, в плоских костях жировые клетки занимают ок. 50% объема костномозговых полостей. К моменту рождения ребенка вилочковая железа хорошо развита, богата лимфоцитами. Структура селезенки, лимф, узлов продолжает формироваться до 10—12 лет. В этот период в них возрастает количество лимф, ткани, оформляются фолликулы, совершенствуется строение капсулы, трабекул, синусов, сосудов. Первые признаки возрастной инволюции вилочковой железы появляются уже в детском возрасте, селезенки и лимф, узлов — после 20—30 лет. При этом имеет место постепенное уменьшение количества лимфоцитов, разрастание соединительной ткани, увеличение числа жировых клеток в вилочковой железе и лимф, узлах вплоть до почти полного замещения ими ткани этих органов.

К. о., характеризуясь определенными анатомо-физиол, особенностями, имеют общие черты строения. Их строма представлена ретикулярной тканью (см.), паренхима — кроветворными клетками. Эти органы богаты элементами, относящимися к системе мононуклеарных фагоцитов. Характерным является наличие капилляров синусоидного типа. В синусах между эндотелиальными клетками имеются поры, через которые ткань К. о. непосредственно осуществляет контакт с кровяным руслом. Такое строение обеспечивает транспорт клеток крови, а также поступление из крови в К. о. гуморальных факторов. В К. о. в большом количестве содержатся миелиновые и безмиелиновые нервные волокна, найдены инкапсулированные рецепторы. Тесное взаимодействие структур этих органов обеспечивает многообразие их функций. Так, строма К. о., являясь опорной тканью, в то же время играет роль в создании микроокружения, индуцирующего кроветворение. В костном мозге в процессах транспорта железа наряду с эритроидными клетками принимают участие элементы стромы. Это подтверждено морфологически наличием эритробластических островков, состоящих из ретикулярной клетки, окруженной эритроидными клетками. В лимфоидных органах при индукции иммунного ответа между макрофагом и расположенными вокруг лимфоцитами обнаружены цитоплазматические мостики, обеспечивающие тесные межклеточные контакты.

Читайте также:  От застоя крови или лимфы

Костный мозг структурно и функционально тесно связан с костной тканью. В опытах in vitro с мышиным костным мозгом показана роль клеток эндоста в регуляции гранулоцитопоэза.

Костный мозг человека является главным местом образования клеток крови. В нем содержится основная масса стволовых кроветворных клеток и осуществляется эритроцитопоэз, гранулоцитопоэз, моноцитопоэз, лимфоцитопоэз, мегакариоцитопоэз. Костный мозг участвует в разрушении эритроцитов, реутилизации железа, синтезе гемоглобина, служит местом накопления резервных липидов. Благодаря наличию большого количества мононуклеарных фагоцитов в костном мозге, селезенке, лимф, узлах осуществляется фагоцитоз (см.).

Селезенка — наиболее сложный по строению К. о. человека. Принимает участие в лимфоцитопоэзе, разрушении эритроцитов, лейкоцитов и тромбоцитов, накоплении железа, синтезе иммуноглобулинов. В ее функцию входит также депонирование крови. Лимфатические узлы продуцируют и депонируют лимфоциты.

Селезенка, лимф, узлы и вилочковая железа являются составными частями лимф, системы, ответственной за выработку иммунитета (см.).

В эту систему входят также лимф, образования по ходу жел.-киш. тракта. Центральным органом системы иммуногенеза является вилочковая железа. Установлено важное значение вилочковой железы в образовании популяции Т-лимфоцитов (тимусзависимых), дифференцирующихся из костномозговых предшественников и участвующих в клеточных реакциях иммунитета. Происхождение популяции B-лимфоцитов (тимуснезависимых), осуществляющих гуморальные реакции иммунитета, связывают с костным мозгом.

В К. о. через лимфу и кровь постоянно происходит рециркуляция лимфоцитов. Лимфоидная ткань селезенки и лимф, узлов представлена Т- и B-лимфоцитами. T-лимфоциты располагаются в лимф, узлах в паракортикальной зоне, в селезенке — около центральных артерий. В-лимфоциты локализуются в центрах размножения фолликулов и мозговых тяжах лимф, узлов, в периферических отделах лимф, фолликулов селезенки.

Определенное влияние на деятельность К. о. оказывает нервная система. Важное значение в регуляции деятельности К. о. имеют гуморальные факторы, среди которых наиболее подробно изучен эритропоэтин (см.). Получены данные о существовании лейкопоэтинов (см.), тромбоцитопоэтинов (см.), а также гуморальных факторов, оказывающих ингибирующее влияние на гемопоэз.

Воздействие на К. о. таких чрезвычайных факторов, как ионизирующая радиация, гипоксия, хим. яды и др., может вызывать развитие анемии (см.), лейкопении (см.), тромбоцитопении (см.).

См. также Кроветворение.

Библиография: Агеев А. К. T-и В-лимфоциты, распределение в организме, функционально-морфологическая характеристика и значение, Арх. патол., т. 38, № 12, с. 3, 1976, библиогр.;

Барта И. Селезенка, Анатомия, физиология, патология и клиника, пер. с венгер., Будапешт, 1976;

Волкова О. В. и Пекарский М. И. Эмбриогенез и возрастная гистология внутренних органов человека, М., 1976, библиогр.; 3аварзин А. А. Очерки эволюционной гистологии крови и соединительной ткани, в. 1, М., 1945, в. 2, М.— Л., 1947; Ланг Г. Ф. Болезни системы кровообращения, М., 1958; Максимов А. А. Основы гистологии, ч. 2, с. 91, Л., 1925; Нормальное кроветворение и его регуляция, под ред. Н. А. Федорова, М., 1976; Чертков И. Л. и Фриденштейн А. Я. Клеточные основы кроветворения, М., 1977, библиогр.; Bessis М. Living blood cells and their ultrastructure, B., 1973; Blood and its disorders, ed. by R. M. Hardisty a. D. J. Weatherall, Oxford a. o., 1974; Ghan S. H. a. Metсalf D. Local production of colony-stimulating factor within the bone marrow: role of nonhematopoietic cells, Blood, v. 40, p. 646, 1972; Metcalf D. a. Moore M A. Haemopoietic cells, Amsterdam, 1971; Till J. E. a. Mс Сullосh E. A. Initial stages of cellular differentiation in the blood-forming system of the mouse, в кн.: Develop, aspects of the cell cycle, ed. by J. L. Cameron a. o., p. 297, N. Y.—L., 1971, bibliogr.; Wickramasing-h e S. N. Human bone marrow, L.— Philadelphia, 1975, bibliogr.

Источник

ГЕМОПОЭЗ ИЛИ КРОВЕТВОРЕНИЕ: КАК ЗАРОЖДАЕТСЯ КРОВЬ В НАШЕМ ОРГАНИЗМЕ?

Кровь – это уникальная жидкая соединительная ткань, в структуре которой выделяют жидкую среду – плазму, красные и белые форменные элементы крови. Ее движение по замкнутой системе осуществляет сердце. Но откуда появляется кровь в организме? Как происходит этот процесс?

Гемопоэз или как зарождается кровь

Кровь не может возникать ниоткуда. Это сложный процесс, который контролируется многими органами и системами и называется гемопоэзом. В ходе этого процесса происходит превращение стволовой в зрелые клетки крови. Когда рождаются эритроциты, этот процесс называется эритропоэом, лейкоциты – лейкпоэзом, тромбоциты – тромбоцитопоэзом и др.

Стволовые гемопоэтические клетки, то есть те, из которых организм может сделать кровь, сосредоточены в красном костном мозге, но их циркуляция может осуществляться в органах, не относящихся к кроветворению.

Содержание клеток в крови у относительно здорового человека стабильно, но при некоторых адаптационных процессах, например, в условиях высокогорья, кровопотери или инфекции, дифференцировка этих клеток ускоряется, что и отображается в анализе крови.

Известно, что ежедневно теряется 2-5 миллиардов клеток, но они замещаются равным количеством новых. Поэтому гемопоэз не прекращается на протяжении всей жизни. Учеными был подсчитан общий вес клеток, которые образуются за всю жизнь (примерно 70 лет): 460 кг эритроцитов, 40 кг тромбоцитов и 275 кг лимфоцитов.

Читайте также:  Движение лимфы в легком

Представление о гемопоэзе основано не теории А.А. Максимова о стволовых клетках. Согласно этой теории, существует одна клетка-прародитель, которая впоследствии может превратиться в любую клетку крови, будь то эритроцит, тромбоцит или лимфоцит. Существует 2 основные линии, схемы кроветворения: лимфоидная, в ходе которой образуются различные виды лимфоцитов, и миелоидная, ведущая к образованию всех остальных клеток крови.

Гемопоэтические стволовые клетки

Стволовые клетки уникальны по своей природе, они могут превращаться не только в клетки крови, но и в клетки других тканей, например, воспроизводить все ткани плода во время внутриутробного развития, уже после рождения строить ткани внутренних органов, крови и т.д.

Для всех стволовых клеток характерен ряд общих свойств:

  • их строение уникально, т.к. отсутствуют структурные компоненты. А вот строение клетки крови значительно отличаются, ее компоненты выполняют определенные функции;

  • способны делиться на десятки, сотни и тысячи клеток;

  • могут перерождаться и превращаться в зрелые клетки, а их строение соответствует ее типу;

  • способны к асимметричному делению: если в этом процессе образуется одна стволовая клетка, то вторая превращается в специализированную;

  • могут перемещаться в очаги повреждения и в буквальном смысле латать дыры, так и происходит регенерация тканей, например, кожи при ее повреждениях.

Где получается кровь?

После рождения главным органом гемопоэза является красный костный мозг, который сосредоточен в большинстве костей, например, ребрах, грудине, а также эпифизе трубчатых костей.

Регуляция процесса образования крови происходит в соответствии с потребностями организма. Чтобы запустить процесс дифференцировки стволовых клеток, нужен сигнал, который поступает от цитокинов, гормонов, которые «рассказывают» о составе крови. И именно они тормозят или ускоряют процесс кроветворения.

В этом процессе принимают участие и играют важную роль витамины, макро- и микроэлементы и, конечно, вода.

Витамин В12 и В9 (фолиевая кислота) участвуют в процессе созревания и деления клеток. Железо и медь необходимы для синтеза гемоглобина, а также для созревания эритробластов – предшественников эритроцитов.

Эритропоэз

Или формирование эритроцитов, которое происходит в костном мозге тазовых и других костей, а у малышей – в эпифизе трубчатых костей. Срок жизни эритроцитов 3-4 месяца, а их утилизация (апоптоз) происходит в печени и селезенке.

Прежде чем выходить в кровь, будущие эритроциты проходят через последовательные стадии созревания, соответствующие красному ростку кроветворения.

Стволовая клетка дает клетку-предшественник – унипотентную клетку, которая имеет рецепторы к эритропоэтину – гормону, вырабатываемому почками, он и контролирует созревание красных кровяных клеток.

Колониеобразующая единица эритроцитов дает начало эритробласту, и через несколько стадий развития они дают «потомство» по следующей схеме:

  • эритробласт;

  • пронормоцит;

  • несколько последовательных форм нооцитов;

  • ретикулоцит;

  • нооцит – зрелый эритроцит, когда он выходит в кровоток и за непродолжительное время становится полноценным эритроцитом.

Лейкопоэз

Лейкоциты могут образовываться в ходе последовательных клеточных превращений, происходящих в органах кроветворения, он начинается в красном костном мозге.

Различают 5 типов лейкоцитов: гранулоциты – это нейтрофилы, эозинофилы, базофилы, и агранулоциты, к числу которых относят моноциты и лимфоциты. Они и составляют лейкоцитарную формулу.

Из стволовой клетки I класса образуется клетка-предшественник миелопоэза или лимфопоэза. И уже эти клетки через определенное число делений и этапов дифференцировки превращаются в зрелые лейкоциты, причем у каждого вида лейкоцита количество этих стадий неодинаково.

Регуляция процесса кроветворения – сложнейшая и генетически обусловленная система. Любые нарушения в этой системе, будь то нарушения выработки гормонов или же болезни, приводят к нарушению нормального состава крови и развитию тех или иных заболеваний.

Так как циркулирует кровь по всему организму, она, можно сказать, является переносчиком информации и может многое рассказать о состоянии здоровья, главное – уметь интерпретировать полученные результаты, но об этом в других материалах.

Текст: Юлия Лапушкина

Источник

Постоянство клеточного состава крови, его обновление осуществляются благодаря взаимосвязи крови и органов, образующих ее элементы (кроветворных).

В костном мозге созревают красные кровяные тельца, зернистые лейкоциты и тромбоциты. Общий вес его у взрослого человека приблизительно составляет 1500 г. Лимфатические узлы, селезенка образуют лимфоциты и моноциты.

Особенности процесса образования клеток крови: теории и факты

Процесс образования клеток крови идет непрерывно в течение всей человеческой жизни, интенсивность его строго соответствует потребностям организма.

По одной из современных теорий следует, что клетки крови человека — эритроциты, лейкоциты и тромбоциты происходят из единой родоначальной материнской клетки, так называемой «стволовой». Путем ее деления и развития появляются клепки, предопределяющие различные ветви кроветворения: образование эритроцитов, зернистых лейкоцитов (гранулоцитов), незернистых лейкоцитов (агранулоцитов), тромбоцитов.

Порожденная общей «стволовой» клеткой, каждая из этих ветвей имеет и свою собственную родоначальную клетку. В процессе деления и постепенного созревания и преобразования этих костномозговых элементов появляются зрелые клетки, поступающие в кровь.

К чести русской науки следует оказать, что мысль о происхождении всех клеток крови из единого источника принадлежит знаменитому русскому ученому-гистологу А. А. Максимову, создавшему еще в 1900—1914 гг. свою теорию кроветворения. Эти исследования нашли подтверждение и дальнейшее развитие в трудах советских исследователей.

Вместе с тем в некоторыми учеными высказывалась мысль о том, что еще до рождения человека в кроветворных органах предопределен вид каждой кроветворной линии — гранулоцитарной, эритроцитарной, лимфоцитарной. В пользу такой точки зрения приводятся данные биохимических исследований клеток крови и костного мозга.

Читайте также:  Из ноги течет лимфа что это

Так, советские биохимики П. Ф. Сейц и П. С. Луганова обнаружили, что для определенных линий кроветворных элементов характерен определенный вид энергетического обмена. На основании этих данных они полагали, что и происхождение клеточных форм на каком-то этапе должно быть различным, поскольку характерный тип обмена (как группа крови, резус-фактор), возникший в клетке в начальном периоде ее развития, сохраняется во всех клеточных популяциях (производных данной линии).

Из всего сказанного можно сделать заключение о том, что кровь обладает многообразными функциями, имеющими первостепенное значение для существования организма. Всякое нарушение постоянства состава этой внутренней среды организма чревато далеко идущими последствиями, приводящими к нарушению здоровья человека.

Как осуществляется кроветворение: механизмы

Процессы разрушения красных кровяных шариков и их образования строго сбалансированы. Если организм теряет какое-то количество крови, то не проходит 2—3 недель, как снова восстанавливается исходный уровень числа эритроцитов и концентрации гемоглобина. При этом всегда наблюдается значительное убыстрение образования красных кровяных телец (эритропоэза) в костном мозге.

Не вызывает сомнений факт существования в организме особых механизмов регуляции эритропоэза, хорошо выявляемых тогда, когда под влиянием каких-либо причин резко уменьшается количество эритроцитов и в связи с этим развивается кислородное голодание — гипоксия.

Законно предположить, что уменьшение снабжения организма кислородом автоматически приводит к увеличению продукции красных кровяных телец.

  • Хорошо известно, что у жителей высокогорья, а так же у альпинистов, достигающих больших высот, число эритроцитов заметно повышается по сравнению с исходной нормой.
  • И наоборот, если в барокамере создать повышенное давление кислорода, то через некоторое время можно отметить постепенное затухание, «вялость» красного кроветворения, вплоть до полного его прекращения.

Возникает вопрос о механизме «эритроцитостимулирующего» действия кислородного голодания. Большим количеством исследований установлено, что этот фактор убыстряет кроветворение через посредство особого вещества, стимулирующего эрицропоэз и получившего название «эритропоэтин».

В 1906 г. два французских исследователя — Карно и Дефляндер — обнаружили, что сыворотка крови, взятая у кроликов через 20 часов после массивной кровопотери и введенная другому здоровому кролику, способствовала у последнего приросту эритроцитов на 2—3 млн. в 1 мм3 крови, а также увеличению количества гемоглобина.

Последующие эксперименты показали, что кислородная недостаточность любого происхождения способна повышать эритростимулирующие свойства кровяной сыворотки.

Наиболее убедительные доказательства существования в организме стимулятора красного кроветворения были представлены в опытах на искусственно сращенных между собой (наподобие сиамских близнецов) крысах.

Этот интересный опыт выглядел так: одна из крыс дышала газовой смесью, содержащей пониженное количество кислорода, а ее партнер — воздухом с нормальным содержанием кислорода. И оказалось, что у обоих животных в костном мозге происходило одинаковое разрастание клеток «красного ряда», а в периферической крови — значительное увеличение эритроцитов.

Объяснить это можно следующим образом: у крысы под влиянием кислородного голодания образуется вещество эритростимулирующего действия, т. е. эритропоэтин, который переходит с кровью через сращенные кровеносные сосуды в организм партнера и вызывает у него активизацию кроветворения.

В каком месте организма образуется эритропоэтин?

Многочисленные клинические наблюдения и особенно опыты на животных представили убедительные аргументы в пользу почечного происхождения эритропоэтина.

Было показано, что двустороннее удаление почек ликвидирует способность организма образовывать эритропоэтин в ответ на кровопотерю или на недостачу кислорода по другой причине. Последующая же подсадка почки, взятой от другого животного, вызывала очень быстрое восстановление эритропоэза в костном мозге.

Роль витамина В12 в кроветворении

В кроветворении принимают участие различные витамины, среди которых особая роль принадлежит витамину В12, содержащему кобальт.

Источником витамина В12 служат продукты животного происхождения; в растительных продуктах он отсутствует. Благодаря этому витамину поддерживается нормальный процесс созревания эритроцитов у здорового человека.

В сутки взрослому человеку необходимо 3—5 мг витамина В12. Как показали современные исследования, витамин В12, попавший в организм с пищей, всасывается в кишечнике лишь при соединении его с особым белком — гастромукопротеином (который иначе называется «внутренний фактор»).

Гастромукопротеин вырабатывается у человека железами желудка и обладает способностью образовывать с витамином В12 комплексное соединение. Оказалось, что этот белок предохраняет витамин от пожирания микроорганизмами, заселяющими кишечник. Таким образом, он выступает в роли «проводника» витамина В12 и спасает его от разрушающего действия микробов.

Всосавшийся витамин накапливается в печени и затем используется для целей кроветворения по мере необходимости.

Установлено, что витамин B12 принимает активное участие в образовании соединений, являющихся составными частями нуклеиновых кислот, — тех самых кислот, коими так богаты ядра клеток и которые определяют основные наследственные признаки организма.

В случае нехватки витамина B12 задерживается синтез нуклеиновых кислот, в результате чего неизбежно нарушается деление постоянно размножающихся кроветворных клеток. Тогда в костном мозге вместо нормальных эритробластов появляются огромные, медленно созревающие клетки, получившие название мегалобластов (от греческого слова «мегалос» — огромный).

На этой почве происходит развитие тяжелого малокровия — злокачественная анемия.

Роль гормонов и нервной системы в кроветворении

Вся сложная, необыкновенно подвижная система крови находится под постоянным влиянием эндокринной и нервной систем. Гормоны (от греческого слова «гормао» — возбуждаю), выделяемые эндокринными органами (железами внутренней секреции), попадают непосредственно в кровь.

Через нее гормоны осуществляют связь одних органов и систем с другими. Они оказывают регулирующее влияние на различные функции организма, в том числе и на кроветворение. Так воздействуют гормоны, вырабатываемые передней долей гипофиза, щитовидной железой, корой надпочечников, половыми железами.

Значительное влияние на процессы кроветворения и распределения элементов крови в сосудах и депо оказывает и, нервная система.

Поделиться ссылкой:

Источник