Наименьшей проводимостью обладает лимфа

Наименьшей проводимостью обладает лимфа thumbnail

Тело человека, если рассматривать его условно как элемент, внезапно подключившийся к электрической цепи, представляет собой сложный проводник. Величину и характер электрического сопротивления человека обусловливают кожа, мышечная ткань, кровеносная и лимфатические системы, внутренние органы, нервы.

Образно тело человека можно представить как токопроводящую массу, окруженную несовершенным диэлектриком — кожным покровом. Следовательно, рассматривая сопротивление человеческого организма, следует различать внешнее сопротивление (сопротивление кожного покрова) и сопротивление внутренних органов.

Сопротивление внутренних органов не зависит от величины приложенного напряжения и в среднем может быть принято равным 1000 Ом, хотя следует заметить, что электропроводность отдельных органов и тканей в живом организме человека различная. Наименьшее сопротивление току оказывают жидкие составные части организма и пропитанные жидкостями ткани.

Хорошими проводниками являются мышцы, подкожная клетчатка, а также жировая ткань вследствие находящихся в ней кровеносных сосудов. Так, например, при переменном токе в 50 Гц объемное сопротивление мышечной ткани составляет 150— 300 Ом*см, крови-— 100—200 Ом*см, спинно-мозговой жидкости — 50—60 Ом*см.

Главным элементом, определяющим сопротивление организма человека, является сухой кожный покров, не имеющий загрязнений, влажности и видимых повреждений. Верхний роговой слой кожного покрова толщиной в 0,05—0,2 мм представляет собой наслоенный изолятор с сопротивлением, составляющим десятки и даже сотни тысяч омов. Электрический ток проникает в организм через поры и каналы потовых желез кожного покрова. Поэтому проводимость того или иного участка тела зависит от количества имеющихся на нем пор и каналов потовых желез и от интенсивности деятельности этих потовых желез. Количество же пор и каналов потовых желез и интенсивность деятельности их на различных участках поверхности человеческого тела различны.

Следовательно, сопротивление кожного покрова зависит от места приложения контактов и величины их поверхностей. Разумеется, не менее важную роль имеет качественность контакта. Влага, пот, воздействие едких паров и газов, токопроводящие химические вещества, токопроводящая пыль (металлическая, угольная и т. п.) значительно снижают сопротивление кожного покрова.

Установлено, что при воздействии на человека электрического тока хотя бы в самых небольших параметрах усиливается деятельность потовых желез. Вследствие этого кожный покров пропитывается потом и сопротивление его резко падает. Этот процесс протекает интенсивнее с увеличением приложенного напряжения и силы тока, протекающего через организм. Но и в том случае, когда кожный покров сухой, а время воздействия электрического тока незначительное для того, чтобы вызвать деятельность потовых желез, условие прохождения тока через тело также зависит от величины приложенного напряжения.

Известно, что через диэлектрик ток проходит тем легче, чем выше приложенное напряжение вследствие возникающей ионизации. Рассматривая кожный покров как диэлектрик, можно утверждать, что ионизация его и обусловливает прохождение тока.

При приложении к поверхности тела тока напряжением в 50 В пробой кожного покрова протекает медленно — в течение нескольких минут; при напряжении в 500 В пробой происходит быстро — в течение долей секунды; в месте контакта электрического тока с кожным покровом обнаруживаются следы его входа в организм и следы его ухода в виде входных и выходных отверстий.

Добрый день!
Вы попали на этот сайт, потому-что в поиске ответа на задание, из игры.
У нас на проекте самая большая база отгадок к этой и многим другим анологичным играм.
По-этому, мы очень рекомендуем добавить наш сайт к себе в браузерные закладки, чтобы не потерять его. Чтобы вы могли очень легко найти ответ на требуемый вопрос из игры-викторины, рекомендуем воспользоваться поиском по сайту, он располагается в верхней-правой части веб-сайта(если вы просматриваете наш проект со смартфона, то ищите форму поиска внизу, под коментариями). Чтобы найти требуемое задание, достаточно ввести всего начальные 2-3 слова из разыскиваемого вопроса.

Если же вдруг произошло невероятное и вы не нашли нужного ответа на какой-то вопрос через поиск, то очень просим вас написать об этом в комментариях.
Мы постараемся быстро поправить это.

Электрические свойства тела человека

Электропроводность — один из параметров, характеризующих жизненную деятельность живого существа. С возникновением живого организма любого вида начинаются биоэлектрические явления, которые прекращаются только после гибели живого существа. Человек не является исключением.

Тело человека представляет собой по своим электрофизическим свойствам соленый раствор (раствор электролита). Разные ткани тела человека характеризуются разной концентрацией раствора электролита и разным его составом, вследствие чего различаются по своим диэлектрическим свойствам (табл. П1.1).

Как любой проводник, тело человека можно охарактеризовать его электрической емкостью. Приближенно емкость любого проводника может быть рассчитана как емкость шара, имеющего такую же площадь поверхности.

Поскольку внутриклеточная жидкость содержит ионы и хорошо проводит электрический ток, то внутренние ткани тела человека обладают довольно низким сопротивлением. В целом же сравнительно высокое сопротивление тела человека электрическому току определяется в основном сопротивлением поверхностных слоев кожи (эпидермиса). Проводимость кожи в значительной степени зависит от ее состояния и осуществляется через потовые и сальные железы. Внутри тела человека ток разветвляется и проходит преимущественно вдоль протоков тканевых жидкостей (кровеносных сосудов, нервных стволов, лимфатических узлов).

Общее сопротивление тела человека постоянному току (от конца одной руки до конца другой) при сухой неповрежденной коже рук составляет 10 4 …10 6 Ом и меньше.

По отношению к переменному току человеческое тело можно рассматривать как параллельно соединенные резистор и конденсатор. Постоянный ток идет только через резистор, и если активное сопротивление тела большое, то сила тока будет невелика. Переменный ток идет и через резистор, и через конденсатор. Так как резистор и конденсатор включены параллельно, их полное сопротивление меньше чисто активного сопротивления и сила тока при данном напряжении должна быть больше, чем в случае постоянного тока.

Читайте также:  Что делать для тока лимфы

Сопротивление человеческого тела току различно для разных индивидуумов. Оно также зависит от состояния здоровья человека. Наличие алкоголя в крови заметно уменьшает сопротивление человеческого тела.

Встречаются люди с уникальными электрическими характеристиками.

Источник

Наименьшей проводимостью обладает лимфа

Наименьшей проводимостью обладает лимфа

Мы поможем в написании ваших работ!

Наименьшей проводимостью обладает лимфа

Мы поможем в написании ваших работ!

Наименьшей проводимостью обладает лимфа

Мы поможем в написании ваших работ!

ЗНАЕТЕ ЛИ ВЫ?

Электропроводимость тканей зависит от их функционального состояния и может быть использована как диагностический показатель. Так, например, при воспалении, когда клетки набухают, уменьшается сечение межклеточных соединений и увеличивается электрическое сопротивление.

Электропроводимость крови – 1,66 Ом*м

Электропроводность – способность веществ проводить электрический ток, обусловленная наличием в них подвижных заряженных частиц (электронов, ионов и др.). Электропроводность (L) является величиной, обратной электрическому сопротивлению (R).
При подаче на объект разности потенциалов (U) через него потечет электрический ток силой (I), величина которой пропорциональна электропроводности (L):
I = L • U или I = U / R.
Величина электропроводности зависит от количества электрических зарядов и их подвижности. Чем больше количество зарядов и их подвижность, тем больше электропроводность.
Вещества по отношению к постоянному току делят на проводники и диэлектрики. Проводники электрические – вещества, хорошо проводящие электрический ток благодаря наличию в них большого количества подвижных заряженных частиц. Они делятся на электронные (металлы), ионные (электролиты) и смешанные, где имеет место движение как электронов, так и ионов (например, плазма). Диэлектрики – твердые, жидкие и газообразные вещества, очень плохо проводящие электрический ток. Удельное сопротивление постоянному току у них составляет 108-1017 Ом • см. Особое место занимают полупроводники – вещества, электропроводность которых при обычных условиях весьма низка, но она резко возрастает с температурой. На их электропроводность влияют и другие внешние воздействия: свет, сильное электрическое поле, поток быстрых частиц и др.
Электропроводность живых тканей определяется концентрацией ионов и их подвижностью, которые весьма неодинаковы в различных тканях, в связи с чем биологические объекты обладают свойствами как проводников, так и диэлектриков.
В межклеточной жидкости с максимальным содержанием ионов удельная электропроводность достаточно высока и составляет 1 См • м-1. Напротив, в цитозоле, содержащем органеллы и крупные белковые молекулы, она понижается до 0,003 См • м-1. Удельная электропроводность плазмолеммы и внутриклеточных мембран еще ниже (1-3) • 10-5 См • м-1. Удельная электропроводность целых органов и тканей существенно меньше, чем составляющих их сред. Ее наибольшие величины (0,6-2,0 См • м-1) имеют жидкие среды организма (кровь, лимфа, желчь, моча, спинно-мозговая жидкость), а также мышечная ткань (0,2 См • м-1). Напротив, удельная электропроводность костной, жировой, нервной ткани, а в особенности грубоволокнистой соединительной ткани и зубной эмали чрезвычайно низкая (10-3-10-6 См • м-1). Электропроводность кожи зависит от толщины состояния дериватов и содержания воды. Сухая кожа является плохим проводником электрического тока, тогда как влажная хорошо проводит его. В связи с тем, что постоянный ток распространяется по пути наименьшего сопротивления, то состояние электропроводности тканей и тесно с ней связанная поляризация существенно сказываются на происходящих в организме изменениях при гальванизации (см.), лекарственном электрофорезе (см. Электрофорез лекарственных веществ) и других электротерапевтических методах.

При воздействии на ткани переменным током, установлено, что ток опережает напряжение. Значит, емкостное сопротивление (Хс) больше, индуктивного (ХL)

Идеальная модель представляет собой схему, состоящую из резисторов и конденсаторов.

Zпослед.=√(R2+1/(ωC)2)

Zпаралл..=R/√(1+RωC)2

Значительно более сложный характер носит электропроводность клеток и тканей для переменного тока. Так как биологические объекты обладают как проводимостью, так и емкостью, то они будут характеризоваться как активным, так и реактивным сопротивлением, в сумме составляющими импеданс объекта. Импеданс биологической ткани зависит от частоты тока: при увеличении частоты реактивная составляющая импеданса уменьшается. Частотно-зависимый характер емкостного сопротивления является одной из причин зависимости импеданса биологических объектов от частоты тока, т.е. дисперсии импеданса. Изменение импеданса с частотой обусловлено также зависимостью поляризации от периода действия переменного тока. Если время, в течение которого электрическое поле направлено в одну сторону, больше времени релаксации какого-либо вида поляризации, то поляризация достигает своего максимального значения и вещество будет характеризоваться постоянными значениями диэлектрической проницаемости и проводимости. До тех пор, пока полупериод переменного тока больше времени релаксации, эффективная диэлектрическая проницаемость и проводимость объекта не будут изменяться с частотой. Если же при увеличении частоты полупериод переменного тока становится меньше времени релаксации, то поляризация не успевает достигнуть максимального значения. После этого диэлектрическая проницаемость начинает уменьшаться с частотой, а проводимость возрастать. При значительном увеличении частоты данный вид поляризации практически будет отсутствовать, а диэлектрическая проницаемость и проводимость снова станут постоянными величинами.
При изучении частотных зависимостей сопротивления и емкости биологических объектов было обнаружено три области дисперсии: ?, ? и ?. ?-Дисперсия занимает область низких частот, примерно до 1 кГц. Ее объясняют поверхностной поляризацией клеток. По мере увеличения частоты переменного тока эффект поверхностной поляризации уменьшается, что проявляется как уменьшение диэлектрической проницаемости и сопротивления ткани. B-Дисперсия занимает более широкую область частот: 103-107 Гц. В прошлом для объяснения дисперсии диэлектрической проницаемости и сопротивления в данной области обращались к теориям дипольной и макроструктурной поляризации. В настоящее время для объяснения ?-дисперсии развивается электрохимическая (электролитическая) теория поляризации биологических объектов. Ценность данного подхода состоит в том, что он позволяет учитывать при описании электрических свойств биологических тканей клеточную проницаемость и наличие ионных потоков через мембрану.
Y-Дисперсия диэлектрической проницаемости и проводимости наблюдается на частотах выше 1000 МГц. Уменьшение диэлектрической проницаемости в данном диапазоне обусловлено ослаблением эффектов поляризации, вызываемой диполями воды.
Общая картина частотной зависимости электрических параметров сохраняется для всех тканей. Некоторые индивидуальные особенности ее определяются размерами и формой клеток, величиной их проницаемости, соотношением между объемом клеток и межклеточных пространств, концентрацией свободных ионов в клетках, содержанием свободной воды и др. Изменение состояния клеток и тканей, их возбуждение, изменение интенсивности метаболизма и других функций клеток приводит к изменению электропроводности биологических систем. В этой связи изменение электропроводности используют для получения информации о функциональном состоянии биологических тканей, для выявления воспалительных процессов, изменения проницаемости клеточных мембран и стенок сосудов при патологии или действии на организм различных факторов, для оценки кровенаполнения сосудов органов и тканей и др.
Дисперсия электрических свойств тканей, обусловленная состоянием заряженных частиц, играет важную роль в действии на организм лечебных физических факторов, в особенности переменных токов, электромагнитных полей и их составляющих. Они определяют их проникающую способность, селективность и механизмы поглощения энергии факторов, первичные механизмы их действия на организм.

Читайте также:  Как разогнать лимфу самостоятельно

I=Δq/Δt

j=I/S

J=υn, υ – скорость направления частиц

J=qJ=qnυ

qE=rυ

υ=bE, где b – подвижность ионов

j=nqa(b++b-)E

jS= nqa(b++b-)US/l

R=l/S nqa(b++b-)

ϒ=1/ρ= nqa(b++b-)

Удельная проводимость ϒ тем больше, чем больше концентрация ионов, их заряд и подвижность. При повышении температуры возрастает подвижность ионов и увеличивается электропроводимость.

Источник

ЭЛЕКТРОПРОВОДНОСТЬ БИОЛОГИЧЕСКИХ СИСТЕМ — количественная характеристика способности живых объектов (тканей) проводить электрический ток. Электропроводность обратно пропорциональна величине электрического сопротивления системы.

Измерение электропроводимости биологических систем используют для получения информации о функциональном состоянии биол, тканей, для выявления воспалительных процессов, изменения проницаемости клеточных мембран и стенок сосудов при патологии или действии на организм физических, химических и других факторов (см. Проницаемость). Измерение электропроводимости биологических систем лежит в основе многих методов оценки кровенаполнения сосудов органов и тканей (см. Реография).

При подаче разности потенциалов (U) через объект течет электрический ток силой (I), величина которой пропорциональна электропроводности (G): I=GU. Величина электропроводности зависит от количества свободных электрических зарядов и их подвижности. Чем больше количество зарядов и их подвижность, тем больше электропроводность. В клетке основными свободными зарядами являются ионы калия и органические анноны, а снаружи клетки, в межклеточных пространствах и тканевых жидкостях — ионы натрия и хлора. В биологических жидкостях (кровь, спинномозговая жидкость, моча и т. д.) электропроводность пропорциональна содержанию в них свободных ионов. Связанные заряды (ионогенные группы белков, липидов, углеводов), перемещение которых ограничено, и крупные ионы с малой подвижностью не оказывают существенного влияния на величину электропроводимости биологических систем.

Электропроводность или сопротивление клеток, тканей, органов и целых организмов измеряют при пропускании через них постоянного или переменного синусоидальной формы тока, частота которого может изменяться от долей герца до 1010 гц. При измерениях на переменном токе с круговой частотой ω (ω = 2πf, где f — частота в гц) общее сопротивление системы, или импеданс (см.), зависит от наличия границ раздела в системе, на которых может происходить накопление зарядов — поляризация (см.). Свойства границ раздела (в биологическом объекте это главным образом различные мембраны) могут быть описаны, если ввести понятие емкости С, сопротивление которой Хс (реактивное сопротивление в отличие от R — активного сопротивления) зависит от частоты, на которой производится измерение: Xс = 1/(ωC).

Общее сопротивление (Z) равно сумме сопротивлений реактивного Хc и активного R, если R и С соединены последовательно; при параллельном соединении R и С общее сопротивление рассчитывается по формуле:

Для измерения электрических характеристик биол. объекта применяют металлические или угольные электроды (см.), которые прикладывают к объекту с помощью жидкостного контакта — тонкого слоя хорошо проводящей жидкости, чаще всего — физиологического раствора. В ряде случаев, напр. при измерении электропроводности цитоплазматических мембран, один из электродов вводится внутрь клетки, а другой подводится к клетке снаружи (см. Микроэлектродный метод исследования). При измерении электропроводимости биологических систем на постоянном и переменном токах низкой частоты важно учитывать величину поляризации электродов, поскольку за счет электродной поляризации истинные электрические параметры биол, объекта могут значительно отличаться от измеренных. Величина поляризации электродов определяется плотностью тока, которая зависит от приложенной к системе разности потенциалов, сопротивления системы, площади измерительных электродов. Чем больше площадь электродов, тем меньше плотность тока и тем меньше искажения, вносимые в измерения электродами. Поэтому для уменьшения плотности тока используют электроды с большой эффективной поверхностью, в частности платиновые электроды, покрытые платиновой чернью (их губчатое покрытие увеличивает эффективную поверхность электродов в 100 — 1000 раз). Возможно применение и так называемых неполяризующихся электродов (например, каломельных, хлорсеребряных).

Для облегчения интерпретации получаемых результатов биологическую систему (ткани, суспензии клеток) часто представляют в виде модели — электрической схемы, состоящей из набора активных сопротивлений и емкостей, являющихся как бы эквивалентами биологических структур клеток или тканей, участвующих в проведении электрического тока.

Измерение электропроводимости биологических систем на постоянном токе из-за высокой степени поляризации мембран и электродов крайне затруднено. На низких частотах переменного тока большая часть тока протекает по межклеточным промежуткам. При увеличении частоты электрического тока реактивное сопротивление емкости падает, поляризационные явления уменьшаются. Зависимость сопротивления и емкости объекта от частоты получила название дисперсии (см.). На высоких частотах общее сопротивление системы зависит только от активных сопротивлений межклеточных пространств и цитоплазмы.

В медицине и биологии электропроводимость биологических систем чаще всего исследуют в области так называемой β-дисперсии, которая наблюдается в диапазоне частот 102—108 гц и определяется поляризацией границ раздела и неоднородностью структуры объекта. Измерения электропроводимости биологических систем показали, что по мере повышения частоты электропроводность возрастает, достигая предельной величины. При переживании и отмирании ткани возрастает электропроводимость биологических систем на низких частотах. Это связано с тем, что при отмирании ткани растет проницаемость мембран для ионов, и они уже не являются границей, на которой может происходить поляризация. Основываясь на способности живой ткани к поляризации, Б. Н. Тарусов предложил в качестве критерия оценки жизнеспособности ткани использовать коэффициент К, численно
равный отношению Rн/Rв где Rн и Rв — сопротивления ткани, измеренные соответственно на низкой и высокой частотах; при отмирании ткани он стремится к единице. Выбор частот для расчета К определяется диапазоном β-дисперсии: низкой частоте соответствует частота начала β-дисперсии, высокой — частота, при которой электропроводимость биологических систем достигает максимальной величины. Например, для мышечной ткани — это 103 и 106 гц, клеток крови и жировой ткани — 104 и 107 гц, кожи — 102 и 104 гц и т. д. На высоких частотах, когда активное и общее сопротивления не зависят от частоты, возможно исследование относительных изменений числа ионов в биол. системе, связанных с нарушением водно-солевого обмена.

Читайте также:  Препараты для оттока лимфы

Сопоставляя Данные, полученные при измерении на низких и высоких частотах, можно вычислить объем и ионную проводимость межклеточных пространств и цитоплазмы клеток, проницаемость мембран для ионов, емкостные характеристики мембраны. Если измерения проводятся в системе, где межклеточные пространства занимают достаточно большой объем (более 20—30%), например при измерениях электропроводности крови, то для вычисления параметров дисперсной фазы (эритроцитов) используют специальные формулы. Частоты, на которых наблюдается дисперсия, зависят от величины клеток и объема межклеточных пространств. Так, дисперсия электропроводимости биологических систем для клеток крови начинается на частотах порядка нескольких десятков килогерц, для мышечной ткани — несколько килогерц, жировой — сотен килогерц. При исследовании электрических характеристик плазматических мембран клеток дисперсия обнаруживается на частотах порядка нескольких десятков герц. Электрические характеристики тканей и органов на низких частотах зависят от неоднородности расположения клеток и межклеточных пространств и соотношения их объемов. Этот факт используется в реографии и реоэнцефалографии (см.) при исследовании изменений кровенаполнения ткани и эластических свойств стенок сосудов. Измерение электропроводимости биологических систем на низких частотах позволяет оценить изменения объема межклеточных пространств, в частности при развитии воспаления (см.). Так, на первых стадиях воспалительного процесса структура клеток изменяется незначительно, и импеданс клеток сохраняет свою величину. По мере набухания клеток и уменьшения объема межклеточных пространств происходит увеличение общего сопротивления системы. На более поздних стадиях развития воспаления импеданс системы уменьшается за счет возрастания проницаемости мембран для различных ионов.

Таким образом, измерение электропроводимости биологических систем или импеданса, особенно в широком диапазоне частот, может быть использовано при исследовании проницаемости клеточных мембран и других границ раздела в клетках, тканях, органах, а стандартизация (измерение удельных величин) дает возможность сравнивать данные, полученные разными исследователями. Возбуждение, изменение интенсивности метаболизма и других функций клеток приводят к изменению электропроводимости биологических систем. Методы измерения электропроводимости биологических систем используют для исследования влияния на биологические объекты различных факторов: работы (увеличение интенсивности метаболизма приводит к увеличению проницаемости мембран); психогенных (изменяется проницаемость кожи за счет работы потовых желез); физических (радиация, ультрафиолетовое излучение, температура и др.) и химических (кислоты, щелочи, спирты и др.), обычно сопровождаемых ростом проницаемости. Изменение проницаемости мембран часто зависит от дозы или концентрации действующего вещества. Так, соли меди в малых концентрациях уменьшают проницаемость мембран мышечных клеток кожи лягушки, а в концентрациях более 10-3 М — увеличивают. Исследование электрических свойств возбудимых тканей способствовало изучению механизма проведения возбуждения по нерву п мышце. На основании измерений активного сопротивления, емкости и их дисперсии была вычислена статическая емкость клеточной мембраны (около 1 мкф/см2) и впервые определена толщина ее липидного бислоя. Было найдено, что удельное сопротивление аксоплазмы и миоплазмы всего в 2—3 раза выше сопротивления внеклеточной жидкости, тогда как сопротивление мембраны выше в десятки тысяч раз. Эти данные послужили основанием для возникновения представления о «кабельной» структуре волокна. Установлены временные соотношения между изменением проницаемости мембраны для ионов и развитием потенциала действия — «импедансный спайк» (см. Биоэлектрические потенциалы, Нервный импульс). Исследование электропроводимости биологических систем может быть использовано для оценки состояния тканей при их консервации, а также эффективности действия биологически активных веществ на модельные системы. В ряде случаев проницаемость биол. мембран для ионов сопряжена с их проницаемостью для незаряженных частиц— сахаров, аминокислот и других соединений. Поэтому измерение электропроводимости биологических систем может оказаться полезным при изучении проницаемости мембран и для неэлектролитов. Исследование электпроводимости биологических систем может найти применение и в биотехнологии для оценки оптимальности среды и условий культивирования клеток.

См. также Кондуктометрия.

Библиогр.: Андреев В. С. Кондуктометрические методы и приборы в биологии и медицине, М., 1973; Биофизика, под ред. Б. Н. Тарусова и О. Р. Колье, с. 186, М., 1968; Гречин В. Б. и Боровикова В. Н. Медленные неэлектрические процессы в оценке функционального состояния мозга человека, с. 22, Л, 1982; Гуревич М. И. и др. Импедансная реоплетизмография, Киев, 1982; Егоров Ю. В. и Кузнецова Г. Д. Мозг как объемный проводник, М., 1976; Слынько П. П. Основы низкочастотной кондуктометрии в биологии, М., 1972; Хассет Дж. Введение в психофизиологию, пер. с англ., с. 53, М., 1981; Электроника и кибернетика в биологии и медицине, пер. с англ., под ред. П. К. Анохина, с. 71, М., 1963; Schwan Н. P. Electrical properties of tissue and cell suspensions, Advanc, biol. med. Phys., v. 5, p. 147, 1957.

Источник