Кровь и лимфа соединительная ткань функции

Кровь и лимфа соединительная ткань функции thumbnail

Тема 10. КРОВЬ И ЛИМФА

Характеристика и состав крови

Кровь – это ткань или одна из разновидностей соединительных тканей.

Система крови включает в себя следующие компоненты:

1) кровь и лимфу;

2) органы кроветворения и иммунопоэза;

3) клетки крови, выселившиеся из крови в соединительную и эпителиальную ткани и способные вернуться (рециркулировать) снова в кровеносное русло (лимфоциты).

Кровь, лимфа и рыхлая неоформленная соединительная ткань составляют внутреннюю среду организма.

Функции крови:

1) транспортная. Данная функция крови крайне разнообразна. Кровь осуществляет перенос газов (за счет способности гемоглобина связывать кислород и углекислый газ), различных питательных и биологически активных веществ;

2) трофическая. Питательные вещества поступают в организм с пищей, затем расщепляются в желудочно-кишечном тракте до белков, жиров и углеводов, всасываются и переносятся кровью к различным органам и тканям;

3) дыхательная. Осуществляется в виде транспорта кислорода и углекислого газа. Оксигенированный в легких гемоглобин (оксигемоглобин) доставляется кровью по артериям ко всем органам и тканям, где происходит газообмен (тканевое дыхание), кислород расходуется на аэробные процессы, а углекислота связывается гемоглобином крови (карбоксигемоглобинам) и по венозному кровотоку доставляется в легкие, где вновь происходит оксигенация;

4) защитная. В крови имеются клетки и системы, обеспечивающие неспецифическую (система комплемента, фагоциты, NK-клетки) и специфическую (Т– и В-системы иммунитета) защиту;

5) экскреторная. Кровь выводит продукты распада макромолекул (мочевина и креатинин выводятся почками с мочой).

В совокупности эти функции обеспечивают гомеостаз (постоянство внутренней среды организма).

Составные компоненты крови:

1) клетки (форменные элементы);

2) жидкое межклеточное вещество (плазма крови).

Соотношение частей крови: плазма – 55 – 60%, форменные элементы – 40 – 45%.

Плазма крови состоит из:

1) воды (90 – 93%);

2) содержащихся в ней веществ (7 – 10%).

В плазме содержатся белки, аминокислоты, нуклеотиды, глюкоза, минеральные вещества, продукты обмена.

Белки плазмы крови:

1) альбумины;

2) глобулины (в том числе иммуноглобулины);

3) фибриноген;

4) белки-ферменты и др.

Функция плазмы – транспорт растворимых веществ.

В связи с тем что в крови содержатся как истинные клетки (лейкоциты), так и постклеточные образования (эритроциты и тромбоциты), в совокупности их принято именовать их в совокупности форменными элементами.

Качественный и количественный состав крови (анализ крови) – гемограмма и лейкоцитарная формула.

Гемограмма взрослого человека:

1) эритроцитов содержится:

а) у мужчин – 3,9 – 5,5 x 1012 в 1 л, или 3,9 – 5,5 млн в 1 мкл, концентрация гемоглобина 130 – 160 г/л;

б) у женщин – 3,7 – 4,9 x 1012, гемоглобин – 120 – 150 г/л;

2) тромбоцитов – 200 – 300 x 109 в 1 л;

3) лейкоцитов – 3,8 – 9 x 109 в 1 л.

Структурная и функциональная характеристика форменных элементов крови

Эритроциты – преобладающая популяция форменных элементов крови. Морфологические особенности:

1) не содержат ядра;

2) не содержат большинства органелл;

3) цитоплазма заполнена пигментным включением (гемоглобином).

Форма эритроцитов:

1) двояковогнутые диски – дискоциты (80%);

2) остальные 20% – сфероциты, планоциты, эхиноциты, седловидные, двуямочные.

По размеру можно выделить следующие виды эритроцитов:

1) нормоциты (7,1 – 7,9 мкм, концентрация нормоцитов в периферической крови – 75%);

2) макроциты (размером более 8 мкм, количество – 12,5%);

3) микроциты (размером менее 6 мкм – 12,5%).

Различаются две формы гемоглобина эритроцитов:

1) НbА;

2) HbF.

У взрослого человека НbА – 98%, HbF – 2%. У новорожденных НbА – 20%, HbF – 80%. Продолжительность жизни эритроцитов – 120 дней. Старые эритроциты разрушаются макрофагами, в основном в селезенке, а освобождающееся из них железо используется созревающими эритроцитами.

В периферической крови имеются незрелые формы эритроциты, называемые ретикулоцитами (1 – 5% от общего числа эритроцитов).

Функции эритроцитов:

1) дыхательная (транспорт газов: O2 и СО2);

2) транспорт других веществ, адсорбированных на поверхности цитолеммы (гормонов, иммуноглобулинов, лекарственных препаратов, токсинов и др.).

Тромбоциты (или кровяные пластинки) – фрагменты цитоплазмы особых клеток красного костного мозга (мегакариоцитов).

Составные части тромбоцита:

1) гиаломер (основа пластинки, окруженная плазмолеммой);

2) грануломер (зернистость, представленная специфическими гранулами, а также фрагментами зернистой ЭПС, рибосомами, митохондриями и др.).

Форма – округлая, овальная, отростчатая.

По степени зрелости тромбоциты подразделяются на:

1) юные;

2) зрелые;

3) старые;

4) дегенеративные;

5) гигантские.

Продолжительность жизни – 5 – 8 дней.

Функция тромбоцитов – участие в механизмах свертывания крови посредством:

1) склеивания пластинок и образования тромба;

2) разрушения пластинок и выделения одного из многочисленных факторов, способствующих превращению глобулярного фибриногена в нитчатый фибрин.

Лейкоциты (или белые кровяные тельца) – ядерные клетки крови, выполняющие защитную функцию. Содержатся в крови от нескольких часов до нескольких суток, а затем покидают кровеносное русло и проявляют свои функции в основном в тканях.

Лейкоциты представляют неоднородную группу и подразделяются на несколько популяций.

Лейкоцитарная формула

Лейкоцитарная формула – процентное содержание различных форм лейкоцитов (к общему числу лейкоцитов, равному 100%).

Морфологическая и функциональная характеристика зернистых лейкоцитов

Нейтрофильные лейкоциты (или нейтрофилы) – самая большая популяция лейкоцитов (65 – 75%.). Морфологические особенности нейтрофилов:

1) сегментированное ядро;

2) в цитоплазме мелкие гранулы, окрашивающиеся в слабооксифильный (розовый) цвет, среди которых можно выделить неспецифические гранулы – разновидности лизосом, специфические гранулы. Органеллы у лейкоцитов не развиты. Размер в мазке составляет 10 – 12 мкм.

По степени зрелости нейтрофилы подразделяются на:

1) юные (метамиелоциты) – 0 – 0,5%;

2) палочкоядерные – 3 – 5%;

Читайте также:  Как лечить выделение лимфы из раны

3) сегментоядерные (зрелые) – 60 – 65%.

Увеличение процентного содержания юных и палочкоядерных форм нейтрофилов носит название сдвига лейкоцитарной формулы влево и является важным диагностическим показателем. Общее увеличение количества нейтрофилов в крови и появление юных форм наблюдается при различных воспалительных процессах в организме. В настоящее время по нейтрофильным лейкоцитам возможно определение половой принадлежности крови – у женщин один из сегментов имеет околоядерный сателлит (или придаток) в виде барабанной палочки.

Продолжительность жизни нейтрофилов – 8 дней, из них 8 – 12 ч они находятся в крови, а затем выходят в соединительную и эпителиальную ткани, где и выполняют основные функции.

Функции нейтрофилов:

1) фагоцитоз бактерий;

2) фагоцитоз иммунных комплексов («антиген – антитело»);

3) бактериостатическая и бактериолитическая;

4) выделение кейлонов и регуляция размножения лейкоцитов.

Эозинофильные лейкоциты (или эозинофилы). Содержание в норме – 1 – 5%. Размеры в мазках – 12 – 14 мкм.

Морфологические особенности эозинофилов:

1) имеется двухсегментное ядро;

2) в цитоплазме отмечается крупная оксифильная (красная) зернистость;

3) другие органеллы развиты слабо.

Среди гранул эозинофилов выделяют неспецифические азурофильные гранулы – разновидность лизосом, содержащую фермент пероксидазу и специфические гранулы, содержащие кислую фосфатазу. Органеллы у эозинофилов развиты слабо.

По степени зрелости эозинофилы также подразделяются на юные, палочкоядерные и сегментоядерные, однако определение этих субпопуляций в клинических лабораториях производится редко.

К способам нейтрализации гистамина и серотонина относятся фагоцитоз и адсорбция этих биологически активных веществ на цитолемме, выделение ферментов, расщепляющих их внеклеточно, выделение факторов, препятствующих выбросу гистамина и серотонина.

Функции эозинофилов – участия в иммунологических (аллергических и анафилактических) реакциях: угнетают (ингибируют) аллергические реакции посредством нейтрализации гистамина и серотонина.

Участием эозинофилов в аллергических реакциях объясняется их повышенное содержание (до 20 – 40% и более) в крови при различных аллергических заболеваниях (глистных инвазиях, бронхиальной астме, при раке и др.).

Продолжительность жизни эозинофилов – 6 – 8 дней, из них нахождение в кровеносном русле составляет 3 – 8 ч.

Базофильные лейкоциты (или базофилы). Это наименьшая популяция зернистых лейкоцитов (0,5 – 1%), однако в общей массе в организме их имеется огромное количество.

Размеры в мазке – 11 – 12 мкм.

Морфология:

1) крупное слабо сегментированное ядро;

2) в цитоплазме содержатся крупные гранулы;

3) другие органеллы развиты слабо.

Функции базофилов – участия в иммунных (аллергических) реакциях посредством выделения гранул (дегрануляции) и содержащихся в них вышеперечисленных биологически активных веществ, которые и вызывают аллергические проявления (отек ткани, кровенаполнение, зуд, спазм гладкой мышечной ткани и др.).

Базофилы также обладают способностью к фагоцитозу.

Морфологическая и функциональная характеристика незернистых лейкоцитов

Агранулоциты не содержат гранул в цитоплазме и подразделяются на две совершенно различные клеточные популяции – лимфоциты и моноциты.

Лимфоциты являются клетками иммунной системы.

Лимфоциты при участии вспомогательных клеток (макрофагов) обеспечивают иммунитет, т. е. защиту организма от генетически чужеродных веществ. Лимфоциты являются единственными клетками крови, способными при определенных условиях митотически делиться. Все остальные лейкоциты являются конечными дифференцированными клетками. Лимфоциты – гетерогенная (неоднородная) популяция клеток.

По размерам лимфоциты подразделяются на:

1) малые (4,5 – 6 мкм);

2) средние (7 – 10 мкм);

3) большие (больше 10 мкм).

В периферической крови до 90% составляют малые лимфоциты и 10 – 12% – средние. Большие лимфоциты в периферической крови в норме не встречаются. При электронно-микроскопическом исследовании малые лимфоциты можно подразделить на светлые и темные.

Малые лимфоциты характеризуются:

1) наличием крупного круглого ядра, состоящего в основном из гетерохроматина, особенно в мелких темных лимфоцитах;

2) узким ободком базофильной цитоплазмы, в которой содержатся свободные рибосомы и слабо выраженные органеллы – эндоплазматическая сеть, единичные митохондрии и лизосомы.

Для средних лимфоцитов характерно:

1) более крупное и рыхлое ядро, состоящее из эухроматина в центре и гетерохроматина по периферии;

2) в цитоплазме по сравнению с малыми лимфоцитами более развиты эндоплазматическая сеть и комплекс Гольджи, больше митохондрий и лизосом.

По источникам развития лимфоциты подразделяются на:

1) Т-лимфоциты. Их образование и дальнейшее развитие связано с тимусом (вилочковой железой);

2) В-лимфоциты. Их развитие у птиц связано с особым органом (фабрициевой сумкой), а у млекопитающих и человека – с пока точно не установленным ее аналогом.

Кроме источников развития, Т– и В-лимфоциты различаются между собой и по выполняемым функции.

По функции:

1) В-лимфоциты и образующиеся из них плазмоциты обеспечивают гуморальный иммунитет, т. е. защиту организма от чужеродных корпускулярных антигенов (бактерий, вирусов, токсинов, белков и др.), содержащихся в крови, лимфотканевой жидкости;

2) Т-лимфоциты, которые по выполняемым функциям подразделяются на следующие субпопуляции: киллеры, хелперы, супрессоры.

Однако эта простая классификация устарела, и сейчас принято все лимфоциты классифицировать по наличию на их мембране рецепторов (CD). В соответствии с этим выделяют лимфоциты CD3, CD4, CD8 и т. д.

По продолжительности жизни лимфоциты подразделяются на:

1) короткоживущие (недели, месяцы) – преимущественно В-лимфоциты;

2) долгоживущие (месяцы, годы) – преимущественно Т-лимфоциты.

Моноциты – наиболее крупные клетки крови (18 – 20 мкм), имеющие крупное бобовидное или подковообразное ядро и хорошо выраженную базофильную цитоплазму, в которой содержатся множественные пиноцитозные пузырьки, лизосомы и другие общие органеллы.

По своей функции – фагоциты. Моноциты являются не вполне зрелыми клетками. Циркулируют в крови 2 – 3 суток, после чего покидают кровеносное русло, мигрируют в разные ткани и органы и превращаются в различные формы макрофагов, фагоцитарная активность которых значительно выше моноцитов. Моноциты и образующиеся из них макрофаги объединяются в единую макрофагическую систему (или мононуклеарную фагоцитарную систему (МФС)).

Читайте также:  Правый лимфатический проток собирает лимфу

Особенности лейкоцитарной формулы у детей

У новорожденных в общем анализе крови эритроцитов 6 – 7 x 1012 в литре – физиологический эритроцитоз, количество гемоглобина достигает 200 г в 1 л, лейкоцитов 10 – 30 x 109 в 1 л – физиологический возрастной лейкоцитоз, количество тромбоцитов такое же, как и у взрослых – 200 – 300 x 109 в л.

После рождения количество эритроцитов и гемоглобина постепенно снижается, достигая сначала показателей взрослых (5 млн в 1 мкл), а затем развивается физиологическая анемия. Уровень эритроцитов и гемоглобина достигает показателей взрослых только к периоду полового созревания. Количество лейкоцитов через 2 недели после рождения снижается до 10 – 15 x 109 в 1 л, а к периоду полового созревания достигает значений взрослого человека.

Наибольшие изменения в лейкоцитарной формуле у детей отмечаются в содержании лимфоцитов и нейтрофилов. Остальные показатели не отличаются от значений взрослых.

При рождении соотношение нейтрофилов и лимфоцитов аналогично показателям взрослых – 65 – 75% к 20 – 35%. В первые дни жизни ребенка наблюдается снижение концентрации нейтрофилов и повышение содержания лимфоцитов, на 4 – 5-е сутки их количество сравнивается – по 45% (первый физиологический перекрест). Далее у детей наблюдаются физиологический лимфоцитоз – до 65% и физиологическая нейтропения – 25%, наиболее низкие показатели нейтрофилов наблюдаются к концу второго года жизни. После этого начинается постепенное повышение содержания нейтрофилов и снижение концентрации лимфоцитов, в возрасте 4 – 5 лет наблюдается второй физиологический перекрест. К периоду полового созревания соотношение нейтрофилов и лимфоцитов приходит к уровню взрослого человека.

Составные компоненты и функции лимфы

Лимфа состоит из лимфоплазмы и форменных элементов, в основном лимфоцитов (98%), а также моноцитов, нейтрофилов, иногда эритроцитов. Лимфоплазма образуется посредством проникновения тканевой жидкости в лимфатические капилляры, а затем отводится по лимфатическим сосудам различного калибра и вливается в венозную систему. По пути движения лимфа проходит через лимфатические узлы, в которых она очищается от экзогенных и эндогенных частиц, а также обогащается лимфоцитами.

Функции лимфатической системы:

1) дренирование тканей;

2) обогащение лимфоцитами;

3) очищение лимфы от экзогенных и эндогенных веществ.

Данный текст является ознакомительным фрагментом.

Источник

Группа соединительных тканей объединяет собственно соединительные ткани (РВСТ и ПВСТ), соединительные ткани со
специальными свойствами (ретикулярная, жировая, слизистая, пигментная), скелетные соединительные ткани (хрящевая и костная).
В рамках школьного курса к соединительным тканям относят жидкую подвижную кровь, строение которой мы изучим в разделе “Кровеносная система”.

Соединительные ткани

Что же общего между жидкой подвижной кровью и плотной неподвижной костью? Общим оказываются три основополагающих признака соединительных тканей:

  • Хорошо развито межклеточное вещество
  • Наличие разнообразных клеток
  • Общее происхождение – из мезенхимы (которая развивается из мезодермы)

Межклеточное вещество соединительных тканей состоит из волокон и основного аморфного вещества (неволокнистый компонент). Волокна могут быть коллагеновыми, эластическими и ретикулярными.

Очевидно, что соединительная ткань образована тремя компонентами: клетки, волокна, основное аморфное вещество.

Собственно соединительные ткани

Собственно соединительные ткани объединяет то, что они содержат коллагеновые волокна (одни или вместе с эластическими), не отличаются высоким содержанием минеральных соединений.

Рыхлая волокнистая соединительная ткань (РВСТ) содержит клетки разной формы: фибробласты (юные), фиброциты (зрелые). РВСТ
содержится во всех внутренних органах (образует строму большинства органов), она располагается по ходу прохождения кровеносных, лимфатических сосудов и нервов,
образует соединительнотканные прослойки, сосочковый слой дермы.

Особенности рыхлой волокнистой соединительной ткани: преобладает основное аморфное вещество (отсюда “рыхлая”, не плотная), коллагеновые и эластические волокна лежат произвольно, не ориентированы в одном направлении.

Обратите внимание на название клеток: фибробласты, фиброциты – эти слова происходят от (лат. fibra – волокно). В
соединительных тканях имеются три основных типа волокон:

  • Коллагеновые – обеспечивают механическую прочность
  • Эластические – обуславливают гибкость тканей
  • Ретикулярные – образуют ретикулярные сети, служащие основой многих органов (печень, костный мозг)

Рыхлая волокнистая соединительная ткань

Плотная волокнистая соединительная ткань (ПВСТ) отличается преобладанием волокон (в основном коллагеновых) над клетками (отсюда термин – плотная).

Волокна могут быть ориентированы в одном направлении (оформленная ПВСТ) или нет (неоформленная ПВСТ).

Неоформленной ПВСТ образован сетчатый (глубокий) слой дермы. Оформленной ПВСТ образованы связки, сухожилия, фасции мышц, капсулы внутренних органов.

Плотная волокнистая соединительная ткань

Соединительные ткани со специальными свойствами

Ретикулярная ткань (от лат. reticulum – сетка) образует строму (опорную структуру) кроветворных и иммунных органов. Состоит из отростчатых ретикулярных клеток и ретикулярных волокон, объединенные в сетевидную структуру.

Ретикулярная ткань является компонентом более сложных кроветворных тканей – миелоидной и лимфоидной. Здесь
зарождаются все клетки кровеносной и иммунной систем, ретикулярная ткань создает микроокружение, необходимое для такого развития.

Ретикулярные ткани

Жировая ткань состоит из скопления жировых клеток (адипоцитов – от лат. adipis – жир + cytos – клетка). Скопления адипоцитов образуют подкожную жировую клетчатку, большой и малый сальники, капсулы внутренних органов (почек), желтый костный мозг в диафизах костей.

Функции жировой ткани:

  • Жировая ткань создает резервный запас питательных веществ, накапливает жиры (липиды – от греч. lípos – жир).
  • Секретирует гормоны – эстроген, лептин.
  • Обеспечивает теплоизоляцию
  • Предупреждает повреждения внутренних органов (защитная функция).

Жировая ткань

Слизистая (студенистая) ткань встречается в норме только между плодными оболочками и в составе пупочного канатика зародыша. Ее относят к эмбриональным тканям, на постэмбриональном этапе развития она отсутствует.

Слизистая ткань

Пигментная ткань отличается большим скоплением пигментных клеток – меланоцитов (от греч. melanos — «чёрный»),
развита на отдельных участках тела: в радужке глаза, вокруг сосков молочных желез.

Читайте также:  Энтеросгель и солодка для чистки лимфы

Пигментная ткань

Скелетные соединительные ткани

К скелетным тканям относятся хрящевая и костная ткани, которые создают опорно-двигательный аппарат, выполняют защитную, механическую и опорную функции, принимают активное участие в минеральном обмене (обмен кальция, фосфора). Играют формообразующую роль в процессе эмбриогенеза и постэмбрионального развития (на месте многих будущих костей вначале образуется хрящ).

Хрящевая ткань состоит из молодых клеток – хондробластов, зрелых – хондроцитов (от греч. chondros – хрящ). Межклеточное вещество хрящевой ткани на 4-7% состоит из минеральных соединений,
упругое, содержит много воды (особенно в молодом возрасте). С течением времени воды в хряще становится меньше и его функция
постепенно нарушается.

В хрящевой
ткани, как и в эпителии, отсутствуют кровеносные сосуды, благодаря чему хрящи отлично приживаются после пересадки. Во многих случаях хрящ покрыт надхрящницей – волокнистой соединительной тканью, которая участвует в росте и питании хряща, которое происходит диффузно.

Хрящевая ткань может быть 3 видов: гиалиновая, эластическая и волокнистая.

Гиалиновая хрящевая ткань образует суставные поверхности костей, метафизы трубчатых костей в период их роста, хрящи воздухоносных путей (гортани, трахеи и крупных бронхов), передние отделы ребер. Эластическая хрящевая ткань образует ушные раковины, хрящи носа, средних бронхов, надгортанник. Волокнистая хрящевая ткань формирует межпозвоночные диски.

Хрящевая ткань

Хрящевая ткань выстилает поверхность костей в месте образования суставов. При нарушении в ней обменных процессов хрящевая ткань начинает
заменяться костной, что сопровождается скованностью и болезненностью движений, возникает артроз.

Артроз коленного сустава

Костная ткань состоит из клеток и хорошо развитого межклеточного вещества, пропитанного минеральными солями (составляют около 60-70%),
преобладающим из которых является фосфат кальция Ca3(PO4)2.

В костной ткани активно идет обмен веществ, интенсивно поглощается кислород. Кости – это вовсе не что-то безжизненное, в них постоянно
появляются новые и отмирают старые клетки. В кости можно обнаружить следующие типы клеток:

  • Остеобласты (др.-греч. osteo – кость) – молодые клетки
  • Остеоциты – зрелые клетки (от греч. osteon — кость и греч. cytos — клетка)
  • Остеокласты (от греч. klastos – разбитый на куски, раздробленны) – отвечают за обновление кости, разрушают старые клетки

Остеокласт (образуется путем слияния клеток, постклеточная структура – симпласт) – фагоцитарно активен, способен разрушать костное вещество.

Разрушение (резорбция) костной ткани – необходимая составная часть перестройки структуры кости, которая происходит в течение всей жизни.

Клетки костной ткани: остеоцит, остеобласт и остеокласт

Принципиальное отличие большинства костей от хрящей – наличие сосудов. Ткань, окружающая кость снаружи, – надкостница, содержит остеобласты и остеокласты. От сосудов надкостницы отходят многочисленные ветви, которые направляются внутрь кости и питают ее.

Кость растет в ширину за счет деления клеток надкостницы, в длину – за счет деления клеток эпифизарной пластинки (хрящевой пластинки роста).

Кость состоит из компактного и губчатого вещества.
Губчатое костное вещество образуют костные пластинки, которые объединяются в трабекулы (имеют форму дуг/арок). Губчатое вещество образует внутренние части губчатых и плоских костей, эпифизы трубчатых костей, внутренний слой диафиза. Содержит орган кроветворение – красный костный мозг.

Компактное вещество почти не имеет промежутков, костные пластинки имеют концентрическую форму (полые цилиндры, вложенные друг в друга). Компактное вещество образует поверхности плоских и губчатых костей, поверхностный слой эпифиза и основную часть диафиза.

Компактное и губчатое вещество кости

Структурной единицей компактного вещества является остеон (Гаверсова система). В Гаверсовом канале, расположенном в центре
остеона, проходят кровеносные сосуды – источник питания для костной ткани. По краям канала лежат юные клетки, остеобласты, и
стволовые клетки. Вокруг канала лежат соединенные друг с другом остеоциты, образующие пластинки.

Остеон

Кость состоит из двух компонентов:

  • Неорганический (минеральный) компонент костной ткани (60-70%)
  • Межклеточное вещество костной ткани содержит коллагеновые волокна, которые пропитаны минеральными солями, главным
    образом – фосфатом кальция Ca3(PO4)2 и кристаллами гидроксиапатита.

    Минеральный компонент обеспечивает прочность кости. Благодаря нему костная ткань выполняет опорную функцию и способна выдерживать значительные нагрузки.

    С возрастом содержание минерального компонента уменьшается (как и другого – органического компонента), в результате кость становится более ломкой и хрупкой, возникает
    склонность к переломам. Истончение костной ткани называется остеопороз (от греч. osteon – кость + греч. poros – пора).

    Остеопороз

  • Органический компонент костной ткани (10-20%)
  • Органический компонент представлен белками (коллаген – фибриллярный белок), липидами (жирами). Он обеспечивает эластичность кости – способность сопротивляться сжатию, растяжению.

    Если провести мацерацию кости (химический опыт) – обработать кость сильными кислотами с целью ее деминерализации, то она станет настолько гибкой, что ее можно завязать в узел. Это возможно благодаря тому, что после опыта в костях остается только органический компонент – все соли растворяются (неорганический компонент исчезает).

    Органические вещества в кости, мацерация кости

    Органический компонент превалирует в костях новорожденных. Их кости очень эластичные. Постепенно минеральные соли накапливаются, и кости становятся твердыми, способными выдержать значительные физические нагрузки.

Происхождение

Соединительные ткани развиваются из мезодермы – среднего зародышевого листка. Более точно – из мезенхимы, которая развивается из мезодермы.

Зародыш человека

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Источник